Results 121 to 130 of about 244,565 (361)

Chemical Reaction Neural Networks for Fitting Accelerating Rate Calorimetry Data [PDF]

open access: yes
As the demand for lithium-ion batteries rapidly increases there is a need to design these cells in a safe manner to mitigate thermal runaway. Thermal runaway in batteries leads to an uncontrollable temperature rise and potentially fires, which is a major safety concern. Typically, when modelling the chemical kinetics of thermal runaway calorimetry data
arxiv   +1 more source

Dynamic Networks via Polymerizable Deep Eutectic Monomers for Uniform Li+ Transport at Interfaces in Lithium Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
The PDEM‐based SIGPE provides a dynamic nanophase from Li+‐bridged molecular self‐association, enhancing electrochemical stability and facilitating uniform Li+ ion flux at the interface. This unique solvation structure results in a hetero species‐driven inorganic‐rich SEI and long‐term cycle stability, suggesting that a PFAS‐free Li+‐containing monomer
Susung Yun   +5 more
wiley   +1 more source

The Pandora Particle Flow Algorithm [PDF]

open access: yesarXiv, 2013
A high-energy e+e- collider, such as the ILC or CLIC, is arguably the best option to complement and extend the LHC physics programme. A lepton collider will allow for exploration of Standard Model Physics, such as precise measurements of the Higgs, top and gauge sectors, in addition to enabling a multitude of New Physics searches.
arxiv  

Superionic Disulfonic Acid Polymers

open access: yesAdvanced Functional Materials, EarlyView.
A strategy is presented to enhance the mechanical and ion transport properties of acid‐functionalized polymers through controlled polymerizations of precisely designed disulfonic acid monomers with well‐defined functional group arrangements. This approach allows for fine control over molecular interactions, and unexpected hydrophobic characteristics ...
Xuelang Gao   +5 more
wiley   +1 more source

High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite

open access: yesAdvanced Functional Materials, EarlyView.
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk   +7 more
wiley   +1 more source

Effectiveness of the fineness of two South African Portland cements for controlling early-age temperature development in concrete

open access: yesJournal of the South African Institution of Civil Engineers, 2011
Temperature gradients due to heat of hydration of cement can cause cracking and present serious structural and serviceability concerns in concrete structures.
P C Graham, Y Ballim, J B Kazirukanyo
doaj  

Dual Side Chain Functionalization of Small Molecule Acceptors Affords High‐Performance Organic Solar Cells With Refined Blend Morphology

open access: yesAdvanced Functional Materials, EarlyView.
A new small‐molecule acceptor (SMA‐Ph‐CF3) is developed using a dual side chain functionalization strategy that incorporates trifluoromethyl and phenyl groups. This approach enables precise tuning of blend morphology, leading to the fabrication of high‐performance organic solar cells with a power conversion efficiency of 18.5%.
Shinbee Oh   +5 more
wiley   +1 more source

Decoding the Structure of Benzodithiophene Polymers for High‐Efficiency Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
This study reveals a unique solid mesophase in top‐performing benzodithiophene‐based polymers for solar cells, comprising stacked solid‐like and liquid‐like layers. Combining nanoscale fibrillar domains with amorphous regions, it introduces a new structural paradigm.
Matteo Sanviti   +16 more
wiley   +1 more source

The calorimetry at the future e+ e- linear collider [PDF]

open access: yeseConf C010630 (2001) E3047, 2002
The physics programme for a coming electron linear collider is dominated by events with final states containing many jets. We develop in this paper the opinion that the best approach is to optimise the independent measurement of the tracks in the tracker, the photons in the electromagnetic calorimeter and the neutral hadrons in the camorimetry ...
arxiv  

Vat Photopolymerization of High Molecular Weight Polymer Latexes with Pseudothermoplastic Properties for Recyclability

open access: yesAdvanced Functional Materials, EarlyView.
A photocurable latex system enables high‐resolution vat photopolymerization of water‐dispersed thermoplastics, yielding pseudothermoplastic materials with recyclability. The formulation permits precise control over mechanical properties and supports reprocessing through conventional and extrusion‐based methods. Compatibility with two‐photon 3D printing
Jon Ayestaran   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy