Results 201 to 210 of about 17,373,161 (316)
This review explores the integration of microfluidic technology with organoid systems as an innovative platform for studying menopausea complex multi‐organ condition. By enabling precise simulation of inter‐organ communication and hormone responses, microfluidic organoids offer a physiologically relevant model for investigating menopausal syndrome and ...
Qianyi Zhang +4 more
wiley +1 more source
CAR-M therapy in the era of tumor immunotherapy: current research progress and engineering strategies. [PDF]
Yang YM, Ding YF, Hu YY, Fan F, Zhao JL.
europepmc +1 more source
Direct Laser Writing of Magnetic Micro Actuators With a Stimulus‐Responsive Compliant Hinge
This study presents a versatile modular design strategy for adaptive 3D microactuators. Using two‐photon‐induced C,H insertion reactions within solid polymer layers, chemically distinct hinge and stimulus responsive materials are patterned in one step. The hinge's properties enable tunable motion, mechanical control, and reconfigurable actuation across
Eleonora Galli +4 more
wiley +1 more source
This study investigates high‐efficiency double perovskite active layer (DPAL) structures using MAPbI3 and MASnI3 to surpass the Shockley‐Queisser limit in single‐junction perovskite solar cells. SCAPS‐1D simulations show that the V2O5‐assisted DPAL device achieves 34.14% power conversion efficiency with improved JSC, VOC, and FF.
Afifa Lubaba +7 more
wiley +1 more source
Sharp Diamond Needles for Single‐Photon Emission
We study the morphological evolution of single‐crystal diamond needles oxidized at 650–700 °C. Electron microscopy and photoluminescence reveal temperature‐ and time‐dependent sharpening, length reduction, and surface modifications affecting tip properties.
Mariam Quarshie +9 more
wiley +1 more source
Engineering the next generation of CAR T- cells: precision modifications, logic gates and universal strategies to overcome exhaustion and tumor resistance. [PDF]
Garcia-Robledo JE +11 more
europepmc +1 more source
Collision‐Resilient Winged Drones Enabled by Tensegrity Structures
Based on structures of birds such as the woodpeck, this article presents the collision‐resilient aerial robot, SWIFT. SWIFT leverages tensegrity structures in the fuselage and wings which allow it to undergo large deformations in a crash, without sustaining damage. Experiments show that SWIFT can reduce impact forces by 70% over conventional structures.
Omar Aloui +5 more
wiley +1 more source
Research on the Coupled Bionic Design and Validation of Flying Car Folding Wings Based on Eurasian Eagle-Owl Wing Shape. [PDF]
Li Z, Cao Y, Zhao D.
europepmc +1 more source
An introduction for multidrive and environment‐adaptive micro/nanorobotics: design and fabrication strategies, intelligent actuation, and their applications. Various intelligent actuation approaches—magnetic, acoustic, optical, chemical, and biological—can be synergistically designed to enhance flexibility and adaptive behavior for precision medicine ...
Aiqing Ma +10 more
wiley +1 more source

