Results 191 to 200 of about 459,445 (367)

Water Permeates and Plasticizes Amorphous Carbon Dots: Unraveling the Inner Accessibility of the Nanoparticles by Glass Transition Studies

open access: yesAdvanced Materials, EarlyView.
The water permeability of amorphous carbon dots (CDs) is demonstrated by investigating their plasticization. Novel polyamide‐based and amorphous nanoparticles are synthesized by controlling their inner packing density. Water plasticization is evidenced by the decrease of the CDs glass transition temperature with increasing the hydration degree.
Elisa Sturabotti   +8 more
wiley   +1 more source

Revealing How Acid Sites Enhance the Electrocatalytic Glycerol Oxidation Performance on Pt Loaded Zeolite‐Carbon Composite Materials

open access: yesAdvanced Materials, EarlyView.
In the work reported herein, the catalytic effects of acid sites on electrocatalytic glycerol oxidation reaction are investigated by using a novel catalytic material system that integrates Pt metal sites with acidic Al sites. Abstract The catalytic role and function of acid sites in solid acid catalysts, such as zeolites, are well understood in the ...
Ju Ye Kim   +11 more
wiley   +1 more source

Polyimide‐Linked Hexaazatriphenylene‐Based Porous Organic Polymer with Multiple Redox‐Active Sites as a High‐Capacity Organic Cathode for Lithium‐Ion Batteries

open access: yesAdvanced Materials, EarlyView.
A high‐capacity polyimide‐linked porous organic polymer (HAT‐PTO) incorporating numerous redox‐active centers is synthesized via a hydrothermal reaction, delivering a high theoretical capacity of 484 mAh g−1. In situ hybridization with carboxyl‐functionalized multiwalled carbon nanotubes enhances conductivity and stability, achieving 397 mAh g−1 at C ...
Arindam Mal   +7 more
wiley   +1 more source

Tailored Redox‐Active Catholytes Enabling High‐Rate and High‐Loading All‐Solid‐State Lithium‐Sulfur Batteries

open access: yesAdvanced Materials, EarlyView.
This study explores iodine substitution in solid electrolytes to overcome sluggish redox kinetics and poor charge transport in all‐solid‐state Li‐S batteries. The resulting iodine‐rich, amorphous phase and superionic, nanocrystalline domains enable effective redox mediation and provide a robust ionic percolation network.
Jingui Yang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy