Results 21 to 30 of about 119,953 (318)

Detour Chromatic Numbers

open access: yesDiscussiones Mathematicae Graph Theory, 2001
Let \(\tau(G)\) denote the number of vertices in a longest path of a graph \(G\). The \(n\)th detour number \(\chi_n(G)\) of a graph \(G\) is the minimum number of colours required to colour the vertices of \(G\) such that no path with more than \(n\) vertices is monocoloured. It is shown that the path partition conjecture, formulated by P. Mihók (see \
Frick, Marietjie, Bullock, Frank
openaire   +1 more source

The Distinguishing Chromatic Number [PDF]

open access: yesThe Electronic Journal of Combinatorics, 2006
In this paper we define and study the distinguishing chromatic number, $\chi_D(G)$, of a graph $G$, building on the work of Albertson and Collins who studied the distinguishing number. We find $\chi_D(G)$ for various families of graphs and characterize those graphs with $\chi_D(G)$ $ = |V(G)|$, and those trees with the maximum chromatic distingushing ...
Collins, Karen L., Trenk, Ann N.
openaire   +2 more sources

On the local distinguishing chromatic number

open access: yesAKCE International Journal of Graphs and Combinatorics, 2019
The distinguishing number of graphs is generalized in two directions by Cheng and Cowen (local distinguishing number) and Collins and Trenk (Distinguishing chromatic number). In this paper, we define and study the local distinguishing chromatic number of
Omid Khormali
doaj   +2 more sources

Chromatic Ramsey number of acyclic hypergraphs [PDF]

open access: yes, 2015
Suppose that $T$ is an acyclic $r$-uniform hypergraph, with $r\ge 2$. We define the ($t$-color) chromatic Ramsey number $\chi(T,t)$ as the smallest $m$ with the following property: if the edges of any $m$-chromatic $r$-uniform hypergraph are colored with
Gyárfás, András   +2 more
core   +2 more sources

Graphs with tiny vector chromatic numbers and huge chromatic numbers [PDF]

open access: yesThe 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., 2003
Summary: \textit{D. Karger, R. Motwani} and \textit{M. Sudan} [J. ACM 45, 246--265 (1998; Zbl 0904.68116)] introduced the notion of a vector coloring of a graph. In particular, they showed that every \(k\)-colorable graph is also vector \(k\)-colorable, and that for constant \(k\), graphs that are vector \(k\)-colorable can be colored by roughly ...
Feige, Uriel   +2 more
openaire   +2 more sources

On the Locating Chromatic Number of Barbell Shadow Path Graph

open access: yesIndonesian Journal of Combinatorics, 2021
The locating-chromatic number was introduced by Chartrand in 2002. The locating chromatic number of a graph is a combined concept between the coloring and partition dimension of a graph.
A. Asmiati   +2 more
doaj   +1 more source

Chromatic Number and Neutrosophic Chromatic Number

open access: yes, 2021
New setting is introduced to study chromatic number. Neutrosophic chromatic number and chromatic number are proposed in this way, some results are obtained. Classes of neutrosophic graphs are used to obtains these numbers and the representatives of the colors. Using colors to assigns to the vertices of neutrosophic graphs is applied. Some questions and
openaire   +2 more sources

Chromatic-Choosability of Hypergraphs with High Chromatic Number [PDF]

open access: yesThe Electronic Journal of Combinatorics, 2019
It was conjectured by Ohba and confirmed  by Noel, Reed and Wu that, for any graph $G$, if $|V(G)|\le 2\chi(G)+1$ then  $G$ is chromatic-choosable; i.e., it satisfies $\chi_l(G)=\chi(G)$. This indicates that the graphs with high chromatic number are chromatic-choosable. We observe that this is also the case for uniform hypergraphs and further propose a
Wang, Wei, Qian, Jianguo
openaire   +3 more sources

Improved Hardness of Approximating Chromatic Number [PDF]

open access: yes, 2013
We prove that for sufficiently large K, it is NP-hard to color K-colorable graphs with less than 2^{K^{1/3}} colors. This improves the previous result of K versus K^{O(log K)} in Khot [14]
Huang, Sangxia
core   +1 more source

Total dominator chromatic number of Kneser graphs

open access: yesAKCE International Journal of Graphs and Combinatorics, 2023
Decomposition into special substructures inheriting significant properties is an important method for the investigation of some mathematical structures. A total dominator coloring (briefly, a TDC) of a graph G is a proper coloring (i.e.
Parvin Jalilolghadr, Ali Behtoei
doaj   +1 more source

Home - About - Disclaimer - Privacy