Results 191 to 200 of about 1,530,143 (402)

Muscle‐Derived Small Extracellular Vesicles Mediate Exercise‐Induced Cognitive Protection in Chronic Cerebral Hypoperfusion

open access: yesAdvanced Science, EarlyView.
sEVs have a critical role in orchestrating interorgan crosstalk and mediating exercise‐induced therapeutic effects. Lin et al. demonstrates that sEVs miR‐17/20a‐5p mediates the muscle‐brain crosstalk and emphasizes the central role of mTOR signaling in executing molecular programs that can protect brain health in response to exercise. Abstract Physical
Huawei Lin   +21 more
wiley   +1 more source

The Reconstruction of Peripheral Auditory Circuit: Recent Advances and Future Challenges

open access: yesAdvanced Science, EarlyView.
This paper summarizes the potential of biomaterials, stem cells, and gene editing technologies in the regeneration of inner ear hair cells, spiral ganglion neurons, and inner ear organoids. Challenges and potential developments are discussed and explored.
Zhe Li   +3 more
wiley   +1 more source

Chromosome Numbers of cultivated Plants II

open access: bronze, 1929
T. Morinaga   +4 more
openalex   +2 more sources

HIC1 suppresses Tumor Progression and Enhances CD8+ T Cells Infiltration Through Promoting GSDMD‐induced Pyroptosis in Gastric Cancer

open access: yesAdvanced Science, EarlyView.
These findings elucidate the innovative role of HIC1 as a transcriptional activator in GC, driving the initiation of pyroptosis and enhancing CD8+ T cell infiltration, which has certain novelty and creative significance. Collectively, targeting HIC1 can present an appealing immunotherapeutic strategy to improve outcomes in GC patients.
Mengjie Kang   +4 more
wiley   +1 more source

3D organization of synthetic and scrambled chromosomes

open access: yesScience, 2017
Guillaume Mercy   +22 more
semanticscholar   +1 more source

IncRNA‐ZFAS1, an Emerging Gate‐Keeper in DNA Damage‐Dependent Transcriptional Regulation

open access: yesAdvanced Science, EarlyView.
LncZFAS1 plays a crucial role during DNA damage response in mammalian cells. Loss of lncZFAS1 results in deficient DNA lesion removal and reduced cell viability. Mechanistically, lncZFAS1 modulates RNAPII phosphorylation and transcription and thereby promotes both GG‐NER and TC‐NER upon UV damage.
Jiena Liu   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy