Results 81 to 90 of about 167,695 (329)
Molecularly engineered memristors integrating Ag nanoparticle–embedded synthetic DNA with quasi‐2D halide perovskites enable ultra‐low‐operational voltage, forming‐free resistive switching, and record‐low power density. This synergistic integration of customized DNA and 2D OHP in bio‐hybrid architecture enhances charge transport, reduces variability ...
Kavya S. Keremane +9 more
wiley +1 more source
Tracking chirality in photoelectron circular dichroism
In photoelectron circular dichroism (PECD) it is generally difficult to trace how and when the chirality of the molecule is imprinted onto the photoelectron.
Marec W. Heger, Daniel M. Reich
doaj +1 more source
Dielectric chiral metasurface is a new type of planar and efficient chiral optical device that shows strong circular dichroism or optical activity, which has important application potential in optical sensing and display. However, the two types of chiral
Jie Li +16 more
doaj +1 more source
The reversible photochemistry of the α-subunit of phycoerythrocyanin (α-PEC) has been measured by low temperature absorption and circular dichroism in the range of 125K to 295 K.
Kai-Hong Zhao, Hugo Scheer
doaj +1 more source
Amyloidogenic Peptide Fragments Designed From Bacterial Collagen‐like Proteins Form Hydrogel
This study identified amyloidogenic sequence motifs in bacterial collagen‐like proteins and exploited these to design peptides that self‐assemble into β‐sheet fibers and form hydrogels. One hydrogel supported healthy fibroblast growth, showing promise for biocompatible materials. Our work demonstrates that bacterial sequences can be harnessed to create
Vamika Sagar +5 more
wiley +1 more source
Emergent quantum confinement at topological insulator surfaces
Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial $
AA Mostofi +45 more
core +2 more sources
Inducing Ferromagnetism by Structural Engineering in a Strongly Spin‐Orbit Coupled Oxide
ABSTRACT Magnetic materials with strong spin‐orbit coupling (SOC) are essential for the advancement of spin‐orbitronic devices, as they enable efficient spin‐charge conversion, complex magnetic structures, spin‐valley physics, topological phases and other exotic phenomena.
Ji Soo Lim +19 more
wiley +1 more source
Design rules are presented to control intestinal organoid polarity in fully synthetic hydrogels. The laminin‐derived IKVAV sequence is crucial to obtain correct intestinal organoid polarity. Increasing hydrogel dynamics further supports the growth of correctly polarized intestinal organoids, while a bulk level of stiffness (G’ ≈ 0.7 kPa) is crucial to ...
Laura Rijns +10 more
wiley +1 more source
Multivalent Protein Nanorings for Broad and Potent SARS‐CoV‐2 Neutralization
A protein‐only, modular multivalent nanoscaffold displaying 20 anchor points, decorated with two different binders (10 of each), targeting the SARS‐CoV‐2 receptor‐binding domain is presented. The construct self‐assembles into stable, biocompatible, homogeneous nanoparticles, exhibit synergistic binding with fM IC50 values. It also detects spike at 9 ng
Molood Behbahanipour +11 more
wiley +1 more source
Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite
In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin.
Shunran Li +12 more
doaj +1 more source

