Results 261 to 270 of about 635,069 (409)

Down‐regulation of Shh in the hair follicles of mice during chemotherapy‐induced hair loss is mediated by the JAK/STAT1 signaling pathway

open access: yesFEBS Open Bio, EarlyView.
We found that during chemotherapy‐induced alopecia (CIA), Sonic hedgehog (Shh) expression significantly decreased in hair follicle Shh+ cells, whereas the Janus‐activated kinase/signal transducer and activator of transcription 1 (JAK/STAT1) signaling pathway was markedly activated.
Ruifang Fan   +6 more
wiley   +1 more source

Editorial: Infections in the intensive care unit, volume III. [PDF]

open access: yesFront Med (Lausanne)
Zhu C, Lin B, Zhang Z, Yu Y.
europepmc   +1 more source

FGFR Like1 drives esophageal cancer progression via EMT, PI3K/Akt, and notch signalling: insights from clinical data and next‐generation sequencing analysis

open access: yesFEBS Open Bio, EarlyView.
Clinical analysis reveals significant dysregulation of FGFRL1 in esophageal cancer (EC) patients. RNAi‐coupled next‐generation sequencing (NGS) and in vitro study reveal FGFRL1‐mediated EC progression via EMT, PI3K/Akt, and Notch pathways. Functional assays confirm its role in tumor growth, migration, and invasion.
Aprajita Srivastava   +3 more
wiley   +1 more source

Educational interventions for improving health-related literature searching skills of health professionals and students. [PDF]

open access: yesCochrane Database Syst Rev
Hirt J   +10 more
europepmc   +1 more source

KLK7 overexpression promotes an aggressive phenotype and facilitates peritoneal dissemination in colorectal cancer cells

open access: yesFEBS Open Bio, EarlyView.
KLK7, a tissue kallikrein‐related peptidase, is elevated in advanced colorectal cancer and associated with shorter survival. High KLK7 levels in ascites correlate with peritoneal metastasis. In mice, KLK7 overexpression increases metastasis. In vitro, KLK7 enhances cancer cell proliferation, migration, adhesion, and spheroid formation, driving ...
Yosr Z. Haffani   +6 more
wiley   +1 more source

Pioglitazone plus (−)‐epigallocatechin gallate: a novel approach to enhance osteogenic performance in aged bone marrow mesenchymal stem cells

open access: yesFEBS Open Bio, EarlyView.
Aged human bmMSCs are seeded in the scaffold. Osteoblastic induction can slightly increase cell's bone‐forming activity to produce bone‐like tissues, shown as the sporadic xylenol orange‐stained spots (the lower left image). Notably, pioglitazone plus EGCG co‐treatment dramatically increases cell's bone‐forming activity and bone‐like tissue production (
Ching‐Yun Chen   +6 more
wiley   +1 more source

A global rank end point for clinical trials in acute heart failure.

open access: yesCirculation: Heart Failure, 2010
G. Felker, A. Maisel
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy