Results 91 to 100 of about 159,356 (284)
An intracellular transporter mitigates the CO2‐induced decline in iron content in Arabidopsis shoots
This study identifies a gene encoding a transmembrane protein, MIC, which contributes to the reduction of shoot Fe content observed in plants under elevated CO2. MIC is a putative Fe transporter localized to the Golgi and endosomal compartments. Its post‐translational regulation in roots may represent a potential target for improving plant nutrition ...
Timothy Mozzanino +7 more
wiley +1 more source
Clock Genes, Metabolism, and Cardiovascular Risk [PDF]
The molecular clockwork drives rhythmic oscillations of signaling pathways managing intermediate metabolism; the circadian timing system synchronizes behavioral cycles and anabolic/catabolic processes with environmental cues, mainly represented by light/darkness alternation.
Tarquini R., Mazzoccoli G.
openaire +3 more sources
By dawn or dusk—how circadian timing rewrites bacterial infection outcomes
The circadian clock shapes immune function, yet its influence on infection outcomes is only beginning to be understood. This review highlights how circadian timing alters host responses to the bacterial pathogens Salmonella enterica, Listeria monocytogenes, and Streptococcus pneumoniae revealing that the effectiveness of immune defense depends not only
Devons Mo +2 more
wiley +1 more source
Watching the hands of the Arabidopsis biological clock [PDF]
Oligonucleotide and cDNA microarrays have been used to analyse the mRNA levels of 8,000 genes in Arabidopsis thaliana throughout the day/night cycle. Genes involved in signal transduction and in various metabolic pathways were found to be coordinately ...
Davis, Seth J. +1 more
core +3 more sources
Hematopoietic (stem) cells—The elixir of life?
The aging of HSCs (hematopoietic stem cells) and the blood system leads to the decline of other organs. Rejuvenating aged HSCs improves the function of the blood system, slowing the aging of the heart, kidney, brain, and liver, and the occurrence of age‐related diseases.
Emilie L. Cerezo +4 more
wiley +1 more source
Effects of desflurane on central and peripheral clock genes in mice
Objective To investigate the effect and mechanism of the anesthetic drug, desflurane, on central and peripheral clock genes in mice. Methods C57BL/6J mice were anesthetized with different concentrations (3%, 4%, 6%, 7%, 9%) of desflurane, and then the ...
TIAN Hongni +4 more
doaj +1 more source
Understanding the role of chromatin remodeling in the regulation of circadian transcription in Drosophila. [PDF]
Circadian clocks enable organisms to anticipate daily changes in the environment and coordinate temporal rhythms in physiology and behavior with the 24-h day-night cycle. The robust cycling of circadian gene expression is critical for proper timekeeping,
Chiu, Joanna C +2 more
core +1 more source
Clock genes, hair growth and aging
Hair follicles undergo continuous cycles of growth, involution and rest. This process, referred to as the hair growth cycle, has a periodicity of weeks to months. At the same time, skin and hair follicles harbor a functional circadian clock that regulates gene expression with a periodicity of approximately twenty four hours.
Geyfman, Mikhail, Andersen, Bogi
openaire +4 more sources
Bifidobacterium bifidum establishes symbiosis with infants by metabolizing lacto‐N‐biose I (LNB) from human milk oligosaccharides (HMOs). The extracellular multidomain enzyme LnbB drives this process, releasing LNB via its catalytic glycoside hydrolase family 20 (GH20) lacto‐N‐biosidase domain.
Xinzhe Zhang +5 more
wiley +1 more source
Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology ...
Saito Shigeru +3 more
doaj +1 more source

