Results 131 to 140 of about 36,908 (247)

Atomic‐Level Ionic Displacement Polarization Enhanced Piezocatalytic Hydrogen Evolution in Covalent Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
Two isomorphic COFs were synthesized and compared, including an amphoteric COF (SQ‐TAPT) and a neutral COF (PDA‐TAPT). The ionic bonds in SQ‐TAPT introduce more Born effective charges, thereby enhancing its ionic displacement polarization. Experimental and theoretical calculations demonstrated that SQ‐TAPT exhibited higher polarity and stronger ...
Ge Yan   +12 more
wiley   +1 more source

Spin Defects in Hexagonal Boron Nitride as 2D Strain Sensors

open access: yesAdvanced Functional Materials, EarlyView.
We demonstrate that boron‐vacancy (VB${\rm V}_{\rm B}$) centers in hexagonal boron nitride (hBN) enable quantitative strain sensing with sub‐micrometer resolution. Using this approach under continuously tunable in‐plane stress, we precisely quantify strain‐induced shifts of the E2g${\rm E}_{2{\rm g}}$ Raman mode in multilayer hBN, establishing VB${\rm ...
Zhao Mu   +7 more
wiley   +1 more source

Thermo‐Mechanically Recyclable Smart Textiles from Circularly Knitted Liquid Crystal Elastomer Fibers

open access: yesAdvanced Functional Materials, EarlyView.
Reprogrammable multi‐material smart textiles knitted from liquid crystal elastomer fibers undergo 2D and 3D deformation under thermal and photo stimuli. Circularly knitted tubular structures reversibly contract in radial and axial directions, enabling autonomous climbing, liquid release, and micro pumping.
Xue Wan   +8 more
wiley   +1 more source

Self‐Hybridized Exciton‐Polariton Photodetectors From Layered Metal‐Organic Chalcogenolates

open access: yesAdvanced Functional Materials, EarlyView.
Self‐hybridized exciton‐polariton photodetectors are demonstrated using high refractive index mithrene, eliminating the need for top mirrors. This simplified architecture enables tunable sub‐bandgap photodetection via lower exciton‐polariton states and enhanced carrier transport through ultrafast polariton group velocities.
Bongjun Choi   +3 more
wiley   +1 more source

Inducing Ferromagnetism by Structural Engineering in a Strongly Spin‐Orbit Coupled Oxide

open access: yesAdvanced Functional Materials, EarlyView.
ABSTRACT Magnetic materials with strong spin‐orbit coupling (SOC) are essential for the advancement of spin‐orbitronic devices, as they enable efficient spin‐charge conversion, complex magnetic structures, spin‐valley physics, topological phases and other exotic phenomena.
Ji Soo Lim   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy