Results 171 to 180 of about 49,019 (247)

Enhanced Activities of OCT4 and SOX2 Promote Epigenetic Reprogramming by Shortening G1 Phase

open access: yesAdvanced Science, EarlyView.
Fusing the VP16 domain to OCT4 and SOX2 (OvSvK) enhances iPSC generation by activating downstream targets, including those regulating the cell cycle. This accelerates reprogramming by shortening the G1 phase and reducing H3K27me3 levels. Modulating Ccnd1, Cdkn2a, and Ccne1 improves efficiency, linking cell cycle to epigenetic remodeling.
Lin Guo   +17 more
wiley   +1 more source

Manifesto: challenging the standard cosmological model. [PDF]

open access: yesPhilos Trans A Math Phys Eng Sci
Binney J   +3 more
europepmc   +1 more source

Apoptotic Bodies Restore NAD and Mitochondrial Homeostasis in Fibroblasts

open access: yesAdvanced Science, EarlyView.
Mesenchymal stem cell‐derived apoptotic bodies (MSC‐ABs) target keloid fibroblasts (KFs), restoring nicotinamide adenine dinucleotide (NAD) metabolism and mitochondrial function, suppressing collagen overproduction, and rebalancing tissue homeostasis, offering a novel therapy for keloid.
Shutong Qian   +10 more
wiley   +1 more source

Biosecurity Primitive: Polymerase X‐based Genetic Physical Unclonable Functions

open access: yesAdvanced Science, EarlyView.
What if every cell line can carry an unforgeable genomic fingerprint—one that proves its origin, ensures its authenticity, and thwarts unauthorized duplication? Here, CRISPR‐induced DNA lesions paired with TdT‐mediated repair produce robust, unique, and unclonable genetic signatures—advancing the concept of molecular Physical Unclonable Functions (PUF)
Zikun Zhou   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy