Results 151 to 160 of about 693,162 (317)
Organic Electrochemical Transistors for Neuromorphic Devices and Applications
Organic electrochemical transistors are emerging as promising platforms for neuromorphic devices that emulate neuronal and synaptic activities and can seamlessly integrate with biological systems. This review focuses on resultant organic artificial neurons, synapses, and integrated devices, with an emphasis on their ability to perform neuromorphic ...
Kexin Xiang +4 more
wiley +1 more source
A new monolayer insulator, InO2, is synthesized by intercalating indium beneath patterned epitaxial graphene on SiC, followed by high‐temperature oxidation. This selective confinement yields large‐area, uniform InO2 with a wide bandgap of 4.1 eV. Upon intercalation, the EG/n‐SiC junction transitions from ohmic to Schottky, exhibiting a rectification ...
Furkan Turker +18 more
wiley +1 more source
Magnetic tunnel junctions (MTJs) using MgO tunnel barriers face challenges of high resistance‐area product and low tunnel magnetoresistance (TMR). To discover alternative materials, Literature Enhanced Ab initio Discovery (LEAD) is developed. The LEAD‐predicted materials are theoretically evaluated, showing that MTJs with dusting of ScN or TiN on ...
Sabiq Islam +6 more
wiley +1 more source
Residual magnetization induces pronounced mechanical anisotropy in ultra‐soft magnetorheological elastomers, shaping deformation and actuation even without external magnetic fields. This study introduces a computational‐experimental framework integrating magneto‐mechanical coupling into topology optimization for designing soft magnetic actuators with ...
Carlos Perez‐Garcia +3 more
wiley +1 more source
Materials and System Design for Self‐Decision Bioelectronic Systems
This review highlights how self‐decision bioelectronic systems integrate sensing, computation, and therapy into autonomous, closed‐loop platforms that continuously monitor and treat diseases, marking a major step toward intelligent, self‐regulating healthcare technologies.
Qiankun Zeng +9 more
wiley +1 more source
The article overviews past and current efforts on caloric materials and systems, highlighting the contributions of Ames National Laboratory to the field. Solid‐state caloric heat pumping is an innovative method that can be implemented in a wide range of cooling and heating applications.
Agata Czernuszewicz +5 more
wiley +1 more source
MEMS‐Based Magnetoelectric Antennas for Wireless Power Transmission in Brain‐Implantable Devices
Magnetoelectric (ME) antennas allow the minimization of the invasiveness of brain implantable devices, via powering wirelessly systems able to actuate neural tissue. In order to achieve the necessary power efficiency transmission, the choice of the materials and the system assembly is vital.
Laura Mazón‐Maldonado +5 more
wiley +1 more source
Fluorinated graphene has opened new opportunities for real‐world applications; however, its working and thermal stability are key issues for practical use. This study successfully demonstrates the stability of a fluorinated graphene‐based photodetector, achieved through a graphene, fluorinated graphene heterostructure (Gr/F‐Gr HS).
Mukesh Kumar Thakur +11 more
wiley +1 more source
A Review on Microreactor Design for Effective Fischer–Tropsch Process Intensification
Design strategies for effective Fischer–Tropsch process intensification are summarized based on experimental and simulation experiences. Recommendations for catalyst loading of packed‐bed and wash‐coated microchannel, microtube, micromonolith, and microstructured reactors are discussed.
Yangjun Wei +5 more
wiley +1 more source
This review outlines how understanding bone's biology, hierarchical architecture, and mechanical anisotropy informs the design of lattice structures that replicate bone morphology and mechanical behavior. Additive manufacturing enables the fabrication of orthopedic implants that incorporate such structures using a range of engineering materials ...
Stylianos Kechagias +4 more
wiley +1 more source

