Results 31 to 40 of about 1,380,157 (288)
Statistical (T) rates of convergence
A real lower triangular matrix \(T\) having nonnegative elements \( t(i,j)\) for which \(\{\sum t(i,j) \mid 0 N( \varepsilon )\) may of course be said to converge to \( L \). The convergence condition may be relaxed by stipulating that the points of exception to the inequality relationship should be sparse. \( K(x,L,\varepsilon| i) \) is the set of \(
Miller, H. I., Orhan, C.
openaire +3 more sources
On stochastic accelerated gradient with convergence rate
This article studies the regression learning problem from given sample data by using stochastic approximation (SA) type algorithm, namely, the accelerated SA.
Zha Xingxing +2 more
doaj +1 more source
In this study, we explore a stochastic age-dependent cooperative Lotka-Volterra (LV) system with an environmental noise. By applying the theory of M-matrix, we prove the existence and uniqueness of the global solution for the system. Since the stochastic
Mengqing Zhang +3 more
doaj +1 more source
On the Convergence Rate of Vanishing Viscosity Approximations
Given a strictly hyperbolic, genuinely nonlinear system of conservation laws, we prove the a priori bound $\big\|u(t,\cdot)-u^\ve(t,\cdot)\big\|_{\L^1}= \O(1)(1+t)\cdot \sqrt\ve|\ln\ve|$ on the distance between an exact BV solution $u$ and a viscous ...
Bianchini +13 more
core +1 more source
The convergence rate of approximate solutions for nonlinear scalar conservation laws [PDF]
The convergence rate is discussed of approximate solutions for the nonlinear scalar conservation law. The linear convergence theory is extended into a weak regime. The extension is based on the usual two ingredients of stability and consistency.
Nessyahu, Haim, Tadmor, Eitan
core +2 more sources
Convergence Rate of Sieve Estimates
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Shen, Xiaotong, Wong, Wing Hung
openaire +2 more sources
Rate of Convergence Towards Semi-Relativistic Hartree Dynamics
We consider the semi-relativistic system of $N$ gravitating Bosons with gravitation constant $G$. The time evolution of the system is described by the relativistic dispersion law, and we assume the mean-field scaling of the interaction where $N \to ...
A. Elgart +27 more
core +1 more source
$U$-Processes: Rates of Convergence
Let \(\xi_ 1,\xi_ 2,..\). be independent, identically distributed random variables and denote by \[ S_ n(f)=\sum_{1\leq i\neq j\leq n}f(\xi_ i,\xi_ j) \] the U-statistic with respect to the kernel f. The authors obtain almost sure convergence results for \(S_ n(f)\) uniformly over \(f\in F\) where F belongs to certain classes of kernels.
Nolan, Deborah, Pollard, David
openaire +2 more sources
Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley +1 more source
Convergence of the compensated split-step θ-method for nonlinear jump-diffusion systems
In this paper, our aim is to develop a compensated split-step θ (CSSθ) method for nonlinear jump-diffusion systems. First, we prove the convergence of the proposed method under a one-sided Lipschitz condition on the drift coefficient, and global ...
Jianguo Tan, Weiwei Men
doaj +1 more source

