Results 141 to 150 of about 357,046 (309)
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source
High Thermoelectric Performance in Low‐Cost Cu8SiSxSe6‐x Argyrodite
This study discovers the great potential of Cu8SiSxSe6‐x argyrodites as new, low‐cost, Te‐free thermoelectric materials. The proposed defect scheme suppresses the phase transition, enhances the weighted mobility and optimizes the grain boundary contacts.
Taras Parashchuk+7 more
wiley +1 more source
Electrically conductive and room temperature magnetic atomically thin (≈0.8 nm) vanadium doped MoS2 (V‐MoS2) is demonstrated for its spintronic applications. Here, the spin transport at the interface of permalloy (Py) and high spin‐orbit coupling V‐MoS2 magnetic monolayers is shown.
Krishna Rani Sahoo+8 more
wiley +1 more source
Sub‐monolayer titania grafted onto mesoporous silica enables solvent‐free photocatalytic upgrading of furfural and cyclopentanone into jet fuel precursors. Advanced spectroscopic methods reveal tunable surface speciation, acidity, and bandgaps, enhancing catalytic efficiency.
Mark A. Isaacs+12 more
wiley +1 more source
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida+16 more
wiley +1 more source
A well‐modulated CeO2/Fe3C heterostructure is successfully constructed. The electron redistribution induced by CeO2 not only enhances the formation energy of Fe vacancies and hinders the dissolution of Fe but also reduces the energy barrier of the ORR.
Peng Wang+8 more
wiley +1 more source
Achieving Chemical Recognition, Recycling, and Circularity With Radical Nanostructures
Here, innovative 3D radical nanostructures based on 4,4′‐dicyano‐2,2′‐biphenylene‐fused tetrazolinyl radical, fabricated on interdigitated gold‐SiO2 hybrid surfaces are presented. They retain their magnetic properties, their morphology and size can can tune, selectively remove them from specific substrate regions using distilled water, and return the ...
Arkaprava Das+10 more
wiley +1 more source
Flexible Optical Fiber Stress/Temperature Dual‐Mode Sensing Based on CaZnOS:Nd,Er
Temperature and stress sensing based on flexible optical fibers may be the key to future artificial intelligence's perception of the world, here an optical fiber sensor capable of realizing such dual mode sensing is preliminary confirmed based on CaZnOS:Nd3+,Er3+.
Pan Zheng+12 more
wiley +1 more source
Optical Whispering‐Gallery Mode as a Fingerprint of Magnetic Ordering in Van der Waals Layered CrSBr
A novel nanoscale optomagnetic sensing approach is developed using whispering‐gallery mode resonances in a self‐rolled‐up microcavity. This method enables ultra‐sensitive detection of weak magnetism by correlating resonance shifts with magnetic susceptibility.
Chi Pang+13 more
wiley +1 more source
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp+7 more
wiley +1 more source