Results 201 to 210 of about 2,877,467 (378)

Advanced Experiment Design Strategies for Drug Development

open access: yesAdvanced Intelligent Discovery, EarlyView.
Wang et al. analyze 592 drug development studies published between 2020 and 2024 that applied design of experiments methodologies. The review surveys both classical and emerging approaches—including Bayesian optimization and active learning—and identifies a critical gap between advanced experimental strategies and their practical adoption in ...
Fanjin Wang   +3 more
wiley   +1 more source

Machine Learning‐Enhanced Random Matrix Theory Design for Human Immunodeficiency Virus Vaccine Development

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study integrates random matrix theory (RMT) and principal component analysis (PCA) to improve the identification of correlated regions in HIV protein sequences for vaccine design. PCA validation enhances the reliability of RMT‐derived correlations, particularly in small‐sample, high‐dimensional datasets, enabling more accurate detection of ...
Mariyam Siddiqah   +3 more
wiley   +1 more source

Advancing Efficient Error Reduction in DNA Data Storage Systems with Deep Learning‐Based Denoising Models

open access: yesAdvanced Intelligent Discovery, EarlyView.
Deep learning‐based denoising models are applied to DNA data storage systems to enhance error reduction and data fidelity. By integrating DnCNN with DNA sequence encoding methods, the study demonstrates significant improvements in image quality and correction of substitution errors, revealing a promising path toward robust and efficient DNA‐based ...
Seongjun Seo   +5 more
wiley   +1 more source

Gaussian Process Regression–Neural Network Hybrid with Optimized Redundant Coordinates: A New Simple Yet Potent Tool for Scientist's Machine Learning Toolbox

open access: yesAdvanced Intelligent Discovery, EarlyView.
A machine learning method, opt‐GPRNN, is presented that combines the advantages of neural networks and kernel regressions. It is based on additive GPR in optimized redundant coordinates and allows building a representation of the target with a small number of terms while avoiding overfitting when the number of terms is larger than optimal.
Sergei Manzhos, Manabu Ihara
wiley   +1 more source

Home - About - Disclaimer - Privacy