Results 31 to 40 of about 89,900 (280)

By dawn or dusk—how circadian timing rewrites bacterial infection outcomes

open access: yesFEBS Letters, EarlyView.
The circadian clock shapes immune function, yet its influence on infection outcomes is only beginning to be understood. This review highlights how circadian timing alters host responses to the bacterial pathogens Salmonella enterica, Listeria monocytogenes, and Streptococcus pneumoniae revealing that the effectiveness of immune defense depends not only
Devons Mo   +2 more
wiley   +1 more source

Saxitoxin-Producing Raphidiopsis raciborskii (Cyanobacteria) Constrains Daphnia Fitness and Feeding Rate despite High Nutritious Food Availability

open access: yesToxics, 2023
Changes in food quality can dramatically impair zooplankton fitness, especially in eutrophic water bodies where cyanobacteria are usually predominant. Cyanobacteria are considered a food with low nutritional value, and some species can produce bioactive ...
Gabriele Costa dos Reis   +4 more
doaj   +1 more source

The role and implications of mammalian cellular circadian entrainment

open access: yesFEBS Letters, EarlyView.
At their most fundamental level, mammalian circadian rhythms occur inside every individual cell. To tell the correct time, cells must align (or ‘entrain’) their circadian rhythm to the external environment. In this review, we highlight how cells entrain to the major circadian cues of light, feeding and temperature, and the implications this has for our
Priya Crosby
wiley   +1 more source

Molecular bases of circadian magnesium rhythms across eukaryotes

open access: yesFEBS Letters, EarlyView.
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley   +1 more source

Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals

open access: yesFrontiers in Cellular and Infection Microbiology, 2022
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and
Thangaiyan Suganya   +7 more
doaj   +1 more source

Heterotrophy among Cyanobacteria

open access: yesACS Omega, 2023
Cyanobacteria have been studied in recent decades to investigate the principle mechanisms of plant-type oxygenic photosynthesis, as they are the inventors of this process, and their cultivation and research is much easier compared to land plants. Nevertheless, many cyanobacterial strains possess the capacity for at least some forms of heterotrophic ...
Stebegg, Ronald   +2 more
openaire   +4 more sources

Time after time – circadian clocks through the lens of oscillator theory

open access: yesFEBS Letters, EarlyView.
Oscillator theory bridges physics and circadian biology. Damped oscillators require external drivers, while limit cycles emerge from delayed feedback and nonlinearities. Coupling enables tissue‐level coherence, and entrainment aligns internal clocks with environmental cues.
Marta del Olmo   +2 more
wiley   +1 more source

Evolutionary adaptations of cyanobacterial polyhydroxybutyrate (PHB) biosynthesis and metabolic pathways in Spirulina, Arthrospira, and Limnospira spp

open access: yesScientific Reports
Cyanobacteria are photosynthetic microorganisms with significant biotechnological potential owing to their ability to produce valuable biopolymers such as polyhydroxybutyrate (PHB).
Fayaazuddin Thajuddin   +5 more
doaj   +1 more source

The (Glg)ABCs of cyanobacteria: modelling of glycogen synthesis and functional divergence of glycogen synthases in Synechocystis sp. PCC 6803

open access: yesFEBS Letters, EarlyView.
We reconstituted Synechocystis glycogen synthesis in vitro from purified enzymes and showed that two GlgA isoenzymes produce glycogen with different architectures: GlgA1 yields denser, highly branched glycogen, whereas GlgA2 synthesizes longer, less‐branched chains.
Kenric Lee   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy