Results 161 to 170 of about 489,558 (321)
Geometrical Designs in Volumetric Bioprinting to Study Cellular Behaviors in Engineered Constructs
Curvature and spatial confinement guide cell behavior in volumetrically printed 3D constructs. Endothelial cells align and spread along specific geometries, while metastatic osteosarcoma cells proliferate independently of structural cues. Label‐free holographic microscopy captures real‐time, long‐term cell–material interactions, highlighting Gel‐PEG's ...
Julia Simińska‐Stanny +3 more
wiley +1 more source
Bacterial cell division is recognized by the septin cytoskeleton for restriction by autophagy [PDF]
Sina Krokowski, Serge Mostowy
openalex +1 more source
Fibrillar Bundles as Fibrous Filler Materials for Attaining Cell Anisotropy in Bioprinting
Fibrillar bundles are introduced as a bioprintable additive that enables robust and scalable cellular alignment within 3D constructs through flow‐induced orientation during extrusion. These fibers support strong cell adhesion and polarization across various cell types and significantly enhance myotube alignment in Gelatine‐Methacryloyl (GelMA ...
Sven Heilig +10 more
wiley +1 more source
Due to its multifunctionality, replicating the fibrillar and supramolecular architecture of Collagen I is gaining increasing priority in regenerative medicine. Using rotational Melt Electrofibrillation, we present a powerful method to accurately mimic the ultrastructure of Collagen with polycaprolactone, enabling the one‐step fabrication of three ...
Zan Lamberger +11 more
wiley +1 more source
Morphological evolution and development of the euglenid cytoskeleton
Heather J. Esson
openalex +1 more source
This work presents ARC‐3D, a soft 3D model that recreates how brain support cells, called astrocytes, react to oxidative stress. The system visualizes rapid calcium changes and inflammatory signals, and shows how the drug KDS12025 can protect cells from damage. ARC‐3D offers a simple, reliable way to study early drivers of brain inflammation.
Ju‐Kang Kim +6 more
wiley +1 more source
Novel photo‐clickable triazine‐trione thermosets can be shaped and cured under mild conditions, including room and physiological temperatures. These materials are biocompatible and support osteogenic differentiation of bone marrow–derived mesenchymal stem cells on their surface.
Åshild Johansen +7 more
wiley +1 more source

