Results 121 to 130 of about 789,084 (305)

Vitamin D Regulates Olfactory Function via Dual Transcriptional and mTOR‐Dependent Translational Control of Synaptic Proteins

open access: yesAdvanced Science, EarlyView.
Vitamin D (VitD) modulates olfactory function by remodeling dendrodendritic synapses in tufted cells through vitamin D receptor‐dependent transcriptional and translational mechanisms. VitD regulates synaptic protein translation partially via mTOR signaling.
Pengcheng Ren   +9 more
wiley   +1 more source

Mitochondrial Calcium Uniporter Drives Chemoresistance in Pancreatic Cancer via Glutathione‐Mediated Stemness Maintenance

open access: yesAdvanced Science, EarlyView.
PDAC has a poor prognosis due to chemoresistance. We revealed that MCU upregulation is associated with chemoresistance and stemness in PDAC. MCU‐mediated Ca2+ influx induced ER stress, activating the PERK‐ATF4/NRF2 axis to enhance PSAT1/SLC711 expression and glutathione synthesis, reducing ROS and maintaining stemness.
Zekun Li   +17 more
wiley   +1 more source

USP9X as a Candidate Mediator of Prenatal Aspirin‐Induced Ovarian Reserve Reduction in Offspring Mice

open access: yesAdvanced Science, EarlyView.
This study suggests that prenatal aspirin exposure is associated with reduced ovarian reserve in offspring, associated with HDAC1‐linked epigenetic downregulation of Usp9x as a candidate mechanism. These preclinical findings provide new insights into fetal‐origin ovarian disorders and contribute to the evidence base concerning aspirin's gestational ...
Yating Li   +11 more
wiley   +1 more source

Improved terminal sliding mode control based on MPC for LIM applied to linear metro. [PDF]

open access: yesSci Rep
Hamad SA   +5 more
europepmc   +1 more source

Multiresolution GPC-Structured Control of a Single-Loop Cold-Flow Chemical Looping Testbed. [PDF]

open access: yesEnergies (Basel), 2020
Zhang S   +5 more
europepmc   +1 more source

Tendon Organoids Enable Functional Tendon Rejuvenation Through ALKBH5‐Dependent RNA Demethylation

open access: yesAdvanced Science, EarlyView.
FT organoids reverse the aged phenotype of tendon cells, reinstating a fetal‐like state. This breakthrough establishes a potent cell source for tendon tissue engineering, effectively advancing regenerative medicine. ABSTRACT Adult tendon injuries pose a major clinical challenge due to limited self‐repair capacity, resulting in suboptimal regeneration ...
Tian Qin   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy