Results 141 to 150 of about 13,537 (233)

Decellularization of tissues and organs

open access: diamond, 2020
Nevra Pelin Cesur   +2 more
openalex   +2 more sources

A Vascularized Microphysiological System Reproducing Endochondral Ossification in Vitro to Study Ewing Sarcoma Proliferation and Migration

open access: yesAdvanced Functional Materials, Volume 36, Issue 3, 8 January 2026.
A biofabricated 3D in vitro model recapitulating endochondral ossification (ECO) is described, mimicking the steps from condensation to chondrogenesis and hypertrophy, culminating with vascularization of the hypertrophic construct. As a model proof of concept application, Ewing Sarcoma cells are seeded in the model, showing modifications in their ...
Maria Vittoria Colombo   +13 more
wiley   +1 more source

Human Endometrial Extracellular Matrix Hydrogel Facilitated Endometrial Mesenchymal Stem Cells for Endometrial Regeneration

open access: yesAdvanced Healthcare Materials, Volume 15, Issue 3, 19 January 2026.
Adequate thickness of the uterine lining is crucial for women with thin or damaged endometrium to achieve pregnancies. Endometrial mesenchymal stem cells (eMSC) can facilitate the cyclical repair and regeneration of the human endometrium. In this study, the human endometrium derived extracellular matrix hydrogel supports the growth of eMSC promoting ...
Jingwen Xu   +9 more
wiley   +1 more source

Systematic analysis of the influence of enzymatic and chemical detergents on structure, biomechanics and biocompatibility of decellularized vascular grafts. [PDF]

open access: yesJ Mater Sci Mater Med
Pfarr J   +11 more
europepmc   +1 more source

An Innovative “Tooth‐On‐Chip” Microfluidic Device Emulating the Structure and Physiology of the Dental Pulp Tissue

open access: yesAdvanced Healthcare Materials, Volume 15, Issue 1, 9 January 2026.
This work presents a “tooth‐on‐chip” device that mimics dental pulp tissue. By co‐culturing key cell types, it recreates vascular networks, stem cell niches, the odontoblast/dentine interface, and trigeminal innervation. This innovative platform provides a unique model of dental pulp structure and physiology, with significant potential for accelerating
Alessandro Cordiale   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy