Shunting Trains with Deep Reinforcement Learning [PDF]
Evertjan Peer +3 more
openalex +1 more source
Metal‐free carbon catalysts enable the sustainable synthesis of hydrogen peroxide via two‐electron oxygen reduction; however, active site complexity continues to hinder reliable interpretation. This review critiques correlation‐based approaches and highlights the importance of orthogonal experimental designs, standardized catalyst passports ...
Dayu Zhu +3 more
wiley +1 more source
Intelligent low carbon reinforced concrete beam design optimization via deep reinforcement learning. [PDF]
Hosseinzadeh A, Dehestani M.
europepmc +1 more source
A Study of Qualitative Knowledge-Based Exploration for Continuous Deep Reinforcement Learning
Chenxi Li +5 more
openalex +2 more sources
Risks of Deep Reinforcement Learning Applied to Fall Prevention Assist by Autonomous Mobile Robots in the Hospital [PDF]
Takaaki NAMBA, Yoji Yamada
openalex +1 more source
Boosting Mechanoluminescence Performance in Doped CaZnOS by the Facile Self‐Reduction Approach
Self‐reduction primarily enhances mechanoluminescence intensity by deliberately introducing lattice defects, which increase structural distortion and amplify the piezoelectric response, thereby improving the force‐to‐light conversion efficiency. Additionally, self‐reduction optimizes the local distribution of Mn2+ ions, promoting energy concentration ...
Shengbin Xu +11 more
wiley +1 more source
Simulation of personalized english learning path recommendation system based on knowledge graph and deep reinforcement learning. [PDF]
Zhou LY, Wang YY.
europepmc +1 more source
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
Aravind Rajeswaran +6 more
openalex +2 more sources
Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning [PDF]
Anusha Nagabandi +3 more
openalex +1 more source
Knowledge transfer in deep reinforcement learning
El auge del aprendizaje automático como método para generar una Inteligencia Ar- tificial (IA), está generando un campo de investigación en el que se están poniendo en práctica varios conceptos ya formulados en los años 40 y 60 y, que antaño, eran imposibles de realizar debido a las implicaciones tecnológicas que eran necesarias. Hoy en día, se dispone
openaire +1 more source

