Results 81 to 90 of about 205,153 (377)

Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit

open access: yeseLife, 2020
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55 ...
James Holder   +2 more
doaj   +1 more source

Coordination of Protein Phosphorylation and Dephosphorylation in Synaptic Plasticity*

open access: yesJournal of Biological Chemistry, 2015
A central theme in nervous system function is equilibrium: synaptic strengths wax and wane, neuronal firing rates adjust up and down, and neural circuits balance excitation with inhibition. This push/pull regulatory theme carries through to the molecular
Kevin M. Woolfrey, M. Dell’Acqua
semanticscholar   +1 more source

siRNA Delivery via Cross‐Linked Gelatin Microparticles Enables Targeted Modulation of Osteogenic‐Vascular Cross‐Talk: An Advanced Human 3D in Vitro Test System for Therapeutic siRNA

open access: yesAdvanced Healthcare Materials, EarlyView.
Osteogenic‐angiogenic cross‐talk is a vital prerequisite for vascularized bone regeneration. In this study, we investigated the effects of siRNA‐mediated silencing of two inhibitory proteins, Chordin and WWP‐1, via CaP‐NP‐loaded gelatin microparticles in osteogenically differentiated microtissues.
Franziska Mitrach   +7 more
wiley   +1 more source

AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-MYC dephosphorylation and degradation

open access: yesNature Cell Biology, 2014
Inhibition of a main regulator of cell metabolism, the protein kinase mTOR, induces autophagy and inhibits cell proliferation. However, the molecular pathways involved in the cross-talk between these two mTOR-dependent cell processes are largely unknown.
V. Cianfanelli   +21 more
semanticscholar   +1 more source

H3 histamine receptor-mediated activation of protein kinase calpha inhibits the growth of cholangiocarcinoma in vitro and in vivo [PDF]

open access: yes, 2009
Histamine regulates functions via four receptors (HRH1, HRH2, HRH3, and HRH4). The D-myo-inositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/protein kinase C (PKC)/mitogen-activated protein kinase pathway regulates cholangiocarcinoma growth.
A. Vetuschi   +13 more
core   +1 more source

CCDC41 Drives Oocyte Meiotic Progression by Promoting Rab11a/Rab7‐Positive Vesicle Fusion with Target Membranes

open access: yesAdvanced Science, EarlyView.
CCDC41 is essential for meiotic maturation in mouse oocytes through regulating Rab7‐positive endosomes fusion with lysosomes and Rab11a‐positive vesicle fusion with the plasma membrane. Abstract Coiled‐coil domain‐containing protein 41 (CCDC41), a core component of centriolar distal appendages involved in centriole assembly and ciliary vesicle docking,
Ying Tian   +12 more
wiley   +1 more source

Integrated Transcriptomics Reveals Evolutionary Trajectories and Cell Density‐Dependent Mechanisms in Aldosterone‐Producing Adenomas

open access: yesAdvanced Science, EarlyView.
Aldosterone‐producing adenomas (APAs) develop via two distinct paths: directly from adrenal zona glomerulosa (zG) cells, or stepwise from zG cells through aldosterone‐producing micronodules (APMs) before progressing to APAs. Advanced single‐cell and spatial analyses identified distinct cell states linked to oxidative stress and cell–cell interactions ...
Zhuolun Sun   +7 more
wiley   +1 more source

Phosphatase Shp2 regulates biogenesis of small extracellular vesicles by dephosphorylating Syntenin

open access: yesJournal of Extracellular Vesicles, 2021
As novel mediators of cell‐to‐cell signalling, small extracellular vesicles (sEVs) play a critical role in physiological and pathophysiological processes. To date, the molecular mechanisms that support sEV generation are incompletely understood.
Yuefei Zhang   +11 more
doaj   +1 more source

Activation of type II calcium/calmodulin-dependent protein kinase by Ca^(2+)/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain [PDF]

open access: yes, 1990
It is now well established that autophosphorylation of a threonine residue located next to each calmodulin-binding domain in the subunits of type II Ca^(2+)/calmodulin-dependent protein kinase causes the kinase to remain active, although at a reduced ...
Kennedy, Mary B.   +2 more
core  

Home - About - Disclaimer - Privacy