Results 181 to 190 of about 321,211 (333)

Micro and Nanostructural Diversity of Lizard Osteoderm Capping Tissue in Relation to Mechanical Performance

open access: yesAdvanced Functional Materials, EarlyView.
This study shows that lizard osteoderm capping tissue is a hyper‐mineralized hydroxyapatite layer consistently covering the superficial osteoderm surface in those species studied here, yet it varies greatly in morphology, nanostructure, and mechanical performance across species.
Adrian Rodriguez‐Palomo   +10 more
wiley   +1 more source

Mapping Nanoscale Buckling in Atomically Thin Cr2Ge2Te6

open access: yesAdvanced Functional Materials, EarlyView.
Atomic‐resolution STEM is used to resolve nanoscale buckling in monolayer Cr2Ge2Te₆. A noise‐robust image analysis reconstructs three‐dimensional lattice distortions from single plan‐view images, revealing pronounced defect‐driven nm‐scale out‐of‐plane buckling.
Amy Carl   +20 more
wiley   +1 more source

Pixelation‐Free, Monolithic Iontronic Pressure Sensors Enabling Large‐Area Simultaneous Pressure and Position Recognition via Machine Learning

open access: yesAdvanced Functional Materials, EarlyView.
A pixelation‐free, monolithic iontronic pressure sensor enables simultaneous pressure and position sensing over large areas. AC‐driven ion release generates spatially varying impedance pathways depending on the pressure. Machine learning algorithms effectively decouple overlapping pressure–position signals from the multichannel outputs, achieving high ...
Juhui Kim   +10 more
wiley   +1 more source

Rolling and Impacting Caustic Drops on Super Liquid‐Repellent Surfaces: In Situ Force and Energy Monitoring of Surface Degradation

open access: yesAdvanced Functional Materials, EarlyView.
The use of continuous drop‐based force and energy probing methods is introduced to evaluate in situ chemical degradation of super liquid‐repellent surfaces by caustic liquids. By tracking the velocity of rolling drops and energy dissipation of impacting drops, degradation dynamics are resolved under high spatio‐temporal precision. Using this technique,
Parham Koochak   +2 more
wiley   +1 more source

Drug‐Free Thrombolysis Mediated by Physically Activated Micro/Nanoparticles

open access: yesAdvanced Functional Materials, EarlyView.
Overview of particle‐mediated thrombolytic effects (thermal, mechanical, and chemical) and their activating physical stimuli (light, ultrasound, and magnetic field) in drug‐free thrombolysis. ABSTRACT Thrombus‐associated disorders rank among the world's leading causes of death, with ischemic heart disease and stroke as the main contributors.
Pierre Sarfati   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy