Results 1 to 10 of about 8,326,757 (331)
Dimensionality reduction mappings [PDF]
A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization schemes based on these objectives.
Bunte, Kerstin +3 more
openaire +5 more sources
Efficient and reliable spike sorting from neural recordings with UMAP-based unsupervised nonlinear dimensionality reduction. [PDF]
Suárez-Barrera D +11 more
europepmc +2 more sources
Dimensionality Reduction: Challenges and Solutions [PDF]
The use of dimensionality reduction techniques is a keystone for analyzing and interpreting high dimensional data. These techniques gather several data features of interest, such as dynamical structure, input-output relationships, the correlation between
Ahmad Noor, Nassif Ali Bou
doaj +1 more source
Non-negative Matrix Factorization for Dimensionality Reduction [PDF]
—What matrix factorization methods do is reduce the dimensionality of the data without losing any important information. In this work, we present the Non-negative Matrix Factorization (NMF) method, focusing on its advantages concerning other methods of ...
Olaya Jbari, Otman Chakkor
doaj +1 more source
Using an octonionic formalism, we introduce a new mechanism for reducing ten space–time dimensions to four without compactification. Applying this mechanism to the free, ten-dimensional, massless (momentum space) Dirac equation results in a particle spectrum consisting of exactly three generations.
Manogue, Corinne A., Dray, Tevian
openaire +2 more sources
Dimensionality reduction methods [PDF]
In case one or more sets of variables are available, the use of dimensional reduction methods could be necessary. In this contest, after a review on the link between the Shrinkage Regression Methods and Dimensional Reduction Methods, authors provide a different multivariate extension of the Garthwaite's PLS approach (1994) where a simple linear ...
D'AMBRA L, AMENTA P, GALLO, Michele
openaire +5 more sources
Dimensionality reduction of complex dynamical systems
Summary: One of the outstanding problems in complexity science and engineering is the study of high-dimensional networked systems and of their susceptibility to transitions to undesired states as a result of changes in external drivers or in the ...
Chengyi Tu +2 more
doaj +1 more source
Dimensionality reduction using singular vectors
A common problem in machine learning and pattern recognition is the process of identifying the most relevant features, specifically in dealing with high-dimensional datasets in bioinformatics.
Majid Afshar, Hamid Usefi
doaj +1 more source
Shape-aware stochastic neighbor embedding for robust data visualisations
Background The t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm has emerged as one of the leading methods for visualising high-dimensional (HD) data in a wide variety of fields, especially for revealing cluster structure in HD single-cell ...
Tobias Wängberg +2 more
doaj +1 more source
Evaluating dimensionality reduction for genomic prediction
The development of genomic selection (GS) methods has allowed plant breeding programs to select favorable lines using genomic data before performing field trials.
Vamsi Manthena +8 more
doaj +1 more source

