Results 161 to 170 of about 3,282,036 (289)
Impact of Nanoparticle Stiffness on Endosomal Escape and Signaling Pathways in Cytosolic Delivery
Nanoparticle (NP) stiffness affects cellular uptake, but its impact on intracellular distribution remains unclear. This study synthesizes silica nanocapsules with varying stiffness, inspired by viral mechanisms, and applies assays to measure cellular uptake and escape efficiency.
Yali Zhang +6 more
wiley +1 more source
Replicating aging and senescence‐related pathophysiological responses in kidney organoids remains a significant challenge. Human adult renal tubular organoid, tubuloids, are successfully developed recapitulating cellular senescence that is the central pathophysiological mechanism of chronic kidney disease (CKD).
Yuki Nakao +20 more
wiley +1 more source
Translesion Synthesis DNA Polymerase Gene Expression Is Impacted by Age and IGF-1 in Epidermal Human Skin. [PDF]
Rider SD +4 more
europepmc +1 more source
ROS‐Scavenging Multifunctional Microneedle Patch Facilitating Wound Healing
A reactive oxygen species (ROS) scavenging and immunomodulatory microneedle patch based on hyaluronic acid methacrylate (HaMA) and Flightless I (Flii)‐siRNA‐laden arginine functionalized poly (β‐amino ester)/alginate particles is developed for chronic wound healing applications.
Mahshid Kharaziha +4 more
wiley +1 more source
DNA polymerase actively and sequentially displaces single-stranded DNA-binding proteins [PDF]
Xu L +7 more
europepmc +2 more sources
The proofreading mechanism of the human leading-strand DNA polymerase ε holoenzyme. [PDF]
Wang F, He Q, O'Donnell ME, Li H.
europepmc +1 more source
DNA polymerase POLQ and cellular defense against DNA damage.
Matthew J. Yousefzadeh, R. Wood
semanticscholar +1 more source
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu +9 more
wiley +1 more source
This work presents a “tooth‐on‐chip” device that mimics dental pulp tissue. By co‐culturing key cell types, it recreates vascular networks, stem cell niches, the odontoblast/dentine interface, and trigeminal innervation. This innovative platform provides a unique model of dental pulp structure and physiology, with significant potential for accelerating
Alessandro Cordiale +6 more
wiley +1 more source

