Results 161 to 170 of about 3,282,036 (289)

Impact of Nanoparticle Stiffness on Endosomal Escape and Signaling Pathways in Cytosolic Delivery

open access: yesAdvanced Healthcare Materials, EarlyView.
Nanoparticle (NP) stiffness affects cellular uptake, but its impact on intracellular distribution remains unclear. This study synthesizes silica nanocapsules with varying stiffness, inspired by viral mechanisms, and applies assays to measure cellular uptake and escape efficiency.
Yali Zhang   +6 more
wiley   +1 more source

A Human Kidney Tubuloid Model of Repeated Cisplatin‐Induced Cellular Senescence and Fibrosis for Drug Screening

open access: yesAdvanced Healthcare Materials, EarlyView.
Replicating aging and senescence‐related pathophysiological responses in kidney organoids remains a significant challenge. Human adult renal tubular organoid, tubuloids, are successfully developed recapitulating cellular senescence that is the central pathophysiological mechanism of chronic kidney disease (CKD).
Yuki Nakao   +20 more
wiley   +1 more source

ROS‐Scavenging Multifunctional Microneedle Patch Facilitating Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
A reactive oxygen species (ROS) scavenging and immunomodulatory microneedle patch based on hyaluronic acid methacrylate (HaMA) and Flightless I (Flii)‐siRNA‐laden arginine functionalized poly (β‐amino ester)/alginate particles is developed for chronic wound healing applications.
Mahshid Kharaziha   +4 more
wiley   +1 more source

DNA polymerase actively and sequentially displaces single-stranded DNA-binding proteins [PDF]

open access: yesNat Commun
Xu L   +7 more
europepmc   +2 more sources

DNA polymerase POLQ and cellular defense against DNA damage.

open access: yesDNA Repair, 2013
Matthew J. Yousefzadeh, R. Wood
semanticscholar   +1 more source

3D‐Printed Multidimensional Bionic Mg‐MC/PLGA Composite for Tailored Repair of Segmental Long Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu   +9 more
wiley   +1 more source

An Innovative “Tooth‐On‐Chip” Microfluidic Device Emulating the Structure and Physiology of the Dental Pulp Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
This work presents a “tooth‐on‐chip” device that mimics dental pulp tissue. By co‐culturing key cell types, it recreates vascular networks, stem cell niches, the odontoblast/dentine interface, and trigeminal innervation. This innovative platform provides a unique model of dental pulp structure and physiology, with significant potential for accelerating
Alessandro Cordiale   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy