Results 41 to 50 of about 179,166 (149)
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang+3 more
wiley +1 more source
Micro‐ and Nano‐Bots for Infection Control
This review presents a strategic vision for integrating micro‐ and nanobots in the pipeline for infection diagnosis, prevention, and treatment. To develop these robots as a practical solution for infection management, their design principles are clarified based on their propulsion mechanisms and then categorized infection management domains based on ...
Azin Rashidy Ahmady+5 more
wiley +1 more source
DNA‑Directed Assembly of Photonic Nanomaterials for Diagnostic and Therapeutic Applications
DNA‐directed assembly offers a powerful strategy for constructing structured photonic nanomaterials with precise spatial control. This review provides a comprehensive overview of recent advancements in DNA‐assembled photonic nanomaterials for diagnostics and therapeutics, highlighting key design principles, functionalization strategies, and optical ...
Longjiang Ding+5 more
wiley +1 more source
Electrospinning and Nanofiber Technology: Fundamentals, Innovations, and Applications
This review explores electrospinning fundamentals, methods for synthesizing polymer, metal oxide, carbon, and composite nanofibers, and advancements in fiber architectures like porous, core–shell, and aligned structures. It highlights applications in functional membranes, sensors, energy systems, and catalyst design while addressing future ...
Yujang Cho+5 more
wiley +1 more source
Topology in Biological Piezoelectric Materials
This review summarizes the topological structures in biological piezoelectric materials, covering morphology evolution, spatial arrangement, and biomimetic strategies. These topologies modulate structure‐property relationships across multiple scales, enabling performance enhancement and multifunctional integration.
Chen Chen+7 more
wiley +1 more source
Ionic Liquid‐Reinforced Multifunctional Hydrogel for the Treatment of Enterocutaneous Fistula
ECFGel is a multifunctional hydrogel engineered to treat infection‐associated ECFs. ECFGel demonstrates outstanding mechanical and biological properties, facilitating easy application, reliable occlusion, and sterilization, while promoting effective healing of infected fistula tracts.
Jinjoo Kim+7 more
wiley +1 more source
Adjusting Cell‐Surface Interactions Through a Covalent Immobilization of Biomolecules
This review presents an overview of current and emerging immobilization techniques coupled with an in‐depth investigation of the underlying mechanisms governing the activity and stability of covalently immobilized biomolecules. The aim of this study is to serve as a guide for the development of long‐lasting biomedical coatings with versatile biological
Sara Shakibania+2 more
wiley +1 more source
Unique nanopillar metasurfaces are fabricated for the purpose of sensitive detection to refractive index changes in the presence of gold nanoparticles. The addition of these nanoparticles to the surface of the silicon nanopillars is facilitated via a novel antibiotic‐mediated linker system to promote localized surface plasmon effects resulting from Mie
Jacob Waitkus+4 more
wiley +1 more source
Progress and Application of Multifunctional Hydrogel in Radioactive Skin Injury
This review examines healing challenges in radiation‐wound injuries, where ionizing radiation impairs immune and tissue repair processes. Hydrogels, with their biocompatibility, antimicrobial properties, and drug delivery capabilities, present a transformative solution. It compares hydrogel efficacy in radiation‐induced versus common wounds, highlights
Xinyue Cui+5 more
wiley +1 more source
Spatially Controlled 3‐D Multiplexed Aptamer Patterning in Hydrogels
A hydrogel platform based on norbornene‐functionalized polyvinyl alcohol enables high‐resolution, 3‐D multiplexed patterning of DNA aptamers via two‐photon polymerization. Two distinct aptamers are covalently immobilized with single micron‐scale precision across the x, y, and z dimensions.
Kevin Roost+9 more
wiley +1 more source