Results 1 to 10 of about 50 (46)
On hyper-dual generalized Fibonacci numbers [PDF]
In this paper, we define hyper-dual generalized Fibonacci numbers. We give the Binet formulae, the generating functions and some basic identities for these numbers.
KOPARAL, SİBEL, ÖMÜR, NEŞE
openaire +5 more sources
Dual Numbers and Operational Umbral Methods [PDF]
Dual numbers and their higher-order version are important tools for numerical computations, and in particular for finite difference calculus. Based on the relevant algebraic rules and matrix realizations of dual numbers, we present a novel point of view, embedding dual numbers within a formalism reminiscent of operational umbral calculus.
Nicolas Behr+3 more
openaire +4 more sources
Dual of bass numbers and dualizing modules [PDF]
Let $R$ be a Noetherian ring and let $C$ be a semidualizing $R$-module. In this paper, by using relative homological dimensions with respect to $C$, we impose various conditions on $C$ to be dualizing. First, we show that $C$ is dualizing if and only if there exists a Cohen-Macaulay $R$-module of type 1 and of finite G$ _C $-dimension.
Mohammad Rahmani, Abdoljavad Taherizadeh
openaire +3 more sources
Vanishing Properties of Dual Bass Numbers [PDF]
Let R be a Noetherian ring, M an Artinian R-module, and 𝖒 ∈ Cos RM. Then cograde R𝔭 Hom R (R𝔭,M) = inf {i | πi(𝔭,M) > 0} and [Formula: see text] where πi(𝔭,M) is the i-th dual Bass number of M with respect to 𝔭, cograde R𝔭 Hom R (R𝔭,M) is the common length of any maximal Hom R (R𝔭, M)-quasi co-regular sequence contained in 𝔭 R𝔭, and fd R𝔭 Hom R (R𝔭,
Lingguang Li, Lingguang Li
openaire +3 more sources
<abstract><p>This paper introduced the concept of dual Leonardo numbers to generalize the earlier studies in harmony and establish key formulas, including the Binet formula and the generating function. Both were employed to obtain specific elements from the sequence. Moreover, we presented a range of identities that provided deeper insights
openaire +3 more sources
Congruences related to dual sequences and Catalan numbers [PDF]
12 ...
Michael X.X. Zhong, Rong-Hua Wang
openaire +3 more sources
Dual-Numbers Reverse AD, Efficiently
Where dual-numbers forward-mode automatic differentiation (AD) pairs each scalar value with its tangent derivative, dual-numbers /reverse-mode/ AD attempts to achieve reverse AD using a similarly simple idea: by pairing each scalar value with a backpropagator function. Its correctness and efficiency on higher-order input languages have been analysed by
Smeding, Tom, Vákár, Matthijs
openaire +6 more sources
On invariants dual to the Bass numbers [PDF]
Let R R be a commutative Noetherian ring, and let M M be an R R -module. In earlier papers by Bass (1963) and Roberts (1980) the Bass numbers μ i ( p , M ) \mu _i(p,M) were defined for all primes p p
Jinzhong Xu, Edgar E. Enochs
openaire +2 more sources