Results 41 to 50 of about 40,983 (302)

Molecular bases of circadian magnesium rhythms across eukaryotes

open access: yesFEBS Letters, EarlyView.
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley   +1 more source

Interplay between circadian and other transcription factors—Implications for cycling transcriptome reprogramming

open access: yesFEBS Letters, EarlyView.
This perspective highlights emerging insights into how the circadian transcription factor CLOCK:BMAL1 regulates chromatin architecture, cooperates with other transcription factors, and coordinates enhancer dynamics. We propose an updated framework for how circadian transcription factors operate within dynamic and multifactorial chromatin landscapes ...
Xinyu Y. Nie, Jerome S. Menet
wiley   +1 more source

Chaotic Dynamics in Asymmetric Rock-Paper-Scissors Games

open access: yesIEEE Access, 2019
Evolutionary game dynamics is a combination of game theory and dynamical systems. Using dynamical theory, we investigate chaotic behavior in asymmetric Rock-Paper-Scissors games under imitative dynamics with two different populations.
Wenjun Hu   +3 more
doaj   +1 more source

Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing

open access: yesFEBS Letters, EarlyView.
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley   +1 more source

Global theory of nonlinear systems-chaos, knots and stability [PDF]

open access: yesActa Montanistica Slovaca, 2003
In this paper we shall give a brief overview of nonlinear dynamical systems theory including the theory of chaos, knots, approximation theory and stability.
Banks Stephen P.
doaj  

Protein pyrophosphorylation by inositol pyrophosphates — detection, function, and regulation

open access: yesFEBS Letters, EarlyView.
Protein pyrophosphorylation is an unusual signaling mechanism that was discovered two decades ago. It can be driven by inositol pyrophosphate messengers and influences various cellular processes. Herein, we summarize the research progress and challenges of this field, covering pathways found to be regulated by this posttranslational modification as ...
Sarah Lampe   +3 more
wiley   +1 more source

Dynamical stability and chaos in artificial neural network trajectories along training

open access: yesFrontiers in Complex Systems
The process of training an artificial neural network involves iteratively adapting its parameters so as to minimize the error of the network’s prediction, when confronted with a learning task.
Kaloyan Danovski   +2 more
doaj   +1 more source

Modern Koopman Theory for Dynamical Systems

open access: yesSIAM Review, 2022
The field of dynamical systems is being transformed by the mathematical tools and algorithms emerging from modern computing and data science. First-principles derivations and asymptotic reductions are giving way to data-driven approaches that formulate models in operator theoretic or probabilistic frameworks.
Steven L. Brunton   +3 more
openaire   +3 more sources

Time after time – circadian clocks through the lens of oscillator theory

open access: yesFEBS Letters, EarlyView.
Oscillator theory bridges physics and circadian biology. Damped oscillators require external drivers, while limit cycles emerge from delayed feedback and nonlinearities. Coupling enables tissue‐level coherence, and entrainment aligns internal clocks with environmental cues.
Marta del Olmo   +2 more
wiley   +1 more source

Multiple ETS family transcription factors bind mutant p53 via distinct interaction regions

open access: yesFEBS Letters, EarlyView.
Mutant p53 gain‐of‐function is thought to be mediated by interaction with other transcription factors. We identify multiple ETS transcription factors that can bind mutant p53 and found that this interaction can be promoted by a PXXPP motif. ETS proteins that strongly bound mutant p53 were upregulated in ovarian cancer compared to ETS proteins that ...
Stephanie A. Metcalf   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy