Results 111 to 120 of about 54,785 (276)
Abstract Air separation via selective adsorption using porous adsorbents offers energy‐efficient alternatives to cryogenic distillation for producing high‐purity O2 and N2. Adsorbent efficacy depends on balancing selectivity, durability, and performance consistency across varying conditions. This comprehensive review critically discusses the design and
Tianqi Wang +9 more
wiley +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Large language models are transforming microbiome research by enabling advanced sequence profiling, functional prediction, and association mining across complex datasets. They automate microbial classification and disease‐state recognition, improving cross‐study integration and clinical diagnostics.
Jieqi Xing +4 more
wiley +1 more source
Exosomes are emerging as powerful biomarkers for disease diagnosis and monitoring. This review highlights the integration of surface‐enhanced Raman spectroscopy with artificial intelligence to enhance molecular fingerprinting of exosomes. Machine learning and deep learning techniques improve spectral interpretation, enabling accurate classification of ...
Munevver Akdeniz +2 more
wiley +1 more source
Artificial Intelligence for Bone: Theory, Methods, and Applications
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan +3 more
wiley +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
This study introduces a tree‐based machine learning approach to accelerate USP8 inhibitor discovery. The best‐performing model identified 100 high‐confidence repurposable compounds, half already approved or in clinical trials, and uncovered novel scaffolds not previously studied. These findings offer a solid foundation for rapid experimental follow‐up,
Yik Kwong Ng +4 more
wiley +1 more source
A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley +1 more source
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova +4 more
wiley +1 more source
Roadmap on Artificial Intelligence‐Augmented Additive Manufacturing
This Roadmap outlines the transformative role of artificial intelligence‐augmented additive manufacturing, highlighting advances in design, monitoring, and product development. By integrating tools such as generative design, computer vision, digital twins, and closed‐loop control, it presents pathways toward smart, scalable, and autonomous additive ...
Ali Zolfagharian +37 more
wiley +1 more source

