Device Integration Technology for Practical Flexible Electronics Systems
Flexible device integration technologies are essential for realizing practical flexible electronic systems. In this review paper, wiring and bonding techniques critical for the industrial‐scale manufacturing of wearable devices are emphasized based on flexible electronics.
Masahito Takakuwa +5 more
wiley +1 more source
Elastin biology and tissue engineering with adult cells
The inability of adult cells to produce well-organized, robust elastic fibers has long been a barrier to the successful engineering of certain tissues. In this review, we focus primarily on elastin with respect to tissue-engineered vascular substitutes ...
Saitow Cassandra B. +4 more
doaj +1 more source
Light‐Responsive Enzyme‐Loaded Nanoparticles for Tunable Adhesion and Mechanical Wound Contraction
This study presents a photoactivatable enzyme‐loaded mesoporous nanoparticle system (MPDA_PaTy) that enables light‐triggered tunable tissue adhesion and facilitates mechanical wound contraction. Controlled enzymatic crosslinking at tissue or hydrogel interfaces allows on‐demand adhesion.
Junghyeon Ko +10 more
wiley +1 more source
Morphology of collagen fibers and elastic system fibers in actinic cheilitis
Background: Actinic cheilitis (AC) is a premalignant condition intimately related to exposure of the lips to sun rays. Aim: The objective of this study was to evaluate the elastic and collagen fibers in the lamina propria of AC. The degree of epithelial
Sgarbi Flavia +3 more
doaj
Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering [PDF]
Agnieszka Haryńska +6 more
openalex +1 more source
Bio‐Friendly Artificial Muscles Based on Carbon Nanotube Yarns and Eutectogel Derivatives
Solid‐state artificial muscles based on coiled commercial carbon nanotube yarns coated with eutectogel derivatives exhibit unipolar actuation through selective ion intercalation. Combining polyanionic and polycationic gels enables enhanced contractile stroke and high energy density.
Gabriela Ananieva +6 more
wiley +1 more source
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv +10 more
wiley +1 more source
An increase of elastic tissue fibers in blood vessel walls of placental stem villi and differences in the thickness of blood vessel walls in third trimester pre-eclampsia pregnancies [PDF]
Özlem Baran +5 more
openalex +1 more source
Guided by the golden ratio, a class of aperiodic architected metamaterials is introduced to address the intrinsic trade‐off between strength and toughness. By unifying local geometric heterogeneity with global order, the golden‐ratio‐guided aperiodic architecture promotes spatial delocalization of damage tolerence regions, leading to more tortuous ...
Junjie Deng +9 more
wiley +1 more source
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang +7 more
wiley +1 more source

