Results 231 to 240 of about 34,824 (338)
Seasonal cold adaptation is vital for insect survival, yet the molecular mechanisms linking diapause to mitochondrial resilience remain largely unresolved. We identify ascaroside C9 (asc‐C9) as a key endocrine signal that enhances diapause survival during cold stress by activating the AKHR–PGC1α–UCP4 axis, thereby driving cold‐induced lipolysis and ...
Jiao Zhou +14 more
wiley +1 more source
Scars exhibit vascular abnormal alterations, including upregulated NRP1 expression in endothelial cells, increased vascular density and branching, compromised vessel wall integrity, and incomplete pericyte coverage. Therapeutic targeting of NRP1 through hydrogel spray delivery offers a promising approach to normalize aberrant vasculature and prevent ...
Yu Wang +11 more
wiley +1 more source
The Protective Effect of Crocin on Rat Bone Marrow Mesenchymal Stem Cells Exposed to Aluminum Chloride as an Endocrine Disruptor. [PDF]
Amini E +4 more
europepmc +1 more source
CD168 Identifies Proliferating Pancreatic Islet Cells in Murine and Human
This study identifies CD168 as a conserved surface marker for proliferating β‐cells in mouse, human islets, and pancreatic islet tumors. CD168⁺ cells show high proliferation and low insulin expression. CD168+ cells form mostly uni‐β lineage clones, and some of the clones are multi‐lineage.
Shubo Yuan +21 more
wiley +1 more source
Androgen Receptor Formation in Prenatally Endocrine Disrupted Mice
Conor D. Irwin
openalex +1 more source
A microenvironment self‐adaptive nanoarmor is developed to effectively address the adhesion‐ and colonization‐related challenges posed by multiple physiological and pathological characteristics in the intestine. L. plantarum@MPN@CS showed significant therapeutic potential in treating Parkinson's disease (PD), a model for extraintestinal disorders, as ...
Limeng Zhu +6 more
wiley +1 more source
Glutamine deprivation triggers ACSL5 upregulation in tumor cells, sustaining their viability via dual metabolic rewiring programs. ACSL5 enhances glycolysis by relieving p53's inhibition of PGAM1 while also sustaining mitochondrial respiration and TCA cycle flux through promoting IDH2 dimerization.
Shuai Tian +11 more
wiley +1 more source

