Results 21 to 30 of about 544,226 (204)

The (Glg)ABCs of cyanobacteria: modelling of glycogen synthesis and functional divergence of glycogen synthases in Synechocystis sp. PCC 6803

open access: yesFEBS Letters, EarlyView.
We reconstituted Synechocystis glycogen synthesis in vitro from purified enzymes and showed that two GlgA isoenzymes produce glycogen with different architectures: GlgA1 yields denser, highly branched glycogen, whereas GlgA2 synthesizes longer, less‐branched chains.
Kenric Lee   +3 more
wiley   +1 more source

Structural biology of ferritin nanocages

open access: yesFEBS Letters, EarlyView.
Ferritin is a conserved iron‐storage protein that sequesters iron as a ferric mineral core within a nanocage, protecting cells from oxidative damage and maintaining iron homeostasis. This review discusses ferritin biology, structure, and function, and highlights recent cryo‐EM studies revealing mechanisms of ferritinophagy, cellular iron uptake, and ...
Eloise Mastrangelo, Flavio Di Pisa
wiley   +1 more source

Bridging the gap: Multi‐stakeholder perspectives of molecular diagnostics in oncology

open access: yesMolecular Oncology, EarlyView.
Although molecular diagnostics is transforming cancer care, implementing novel technologies remains challenging. This study identifies unmet needs and technology requirements through a two‐step stakeholder involvement. Liquid biopsies for monitoring applications and predictive biomarker testing emerge as key unmet needs. Technology requirements vary by
Jorine Arnouts   +8 more
wiley   +1 more source

PYCR1 inhibition in bone marrow stromal cells enhances bortezomib sensitivity in multiple myeloma cells by altering their metabolism

open access: yesMolecular Oncology, EarlyView.
This study investigated how PYCR1 inhibition in bone marrow stromal cells (BMSCs) indirectly affects multiple myeloma (MM) cell metabolism and viability. Culturing MM cells in conditioned medium from PYCR1‐silenced BMSCs impaired oxidative phosphorylation and increased sensitivity to bortezomib.
Inge Oudaert   +13 more
wiley   +1 more source

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

Patient‐specific pharmacogenomics demonstrates xCT as predictive therapeutic target in colon cancer with possible implications in tumor connectivity

open access: yesMolecular Oncology, EarlyView.
This study integrates transcriptomic profiling of matched tumor and healthy tissues from 32 colorectal cancer patients with functional validation in patient‐derived organoids, revealing dysregulated metabolic programs driven by overexpressed xCT (SLC7A11) and SLC3A2, identifying an oncogenic cystine/glutamate transporter signature linked to ...
Marco Strecker   +16 more
wiley   +1 more source

Cytoplasmic p21 promotes stemness of colon cancer cells via activation of the NFκB pathway

open access: yesMolecular Oncology, EarlyView.
Cytoplasmic p21 promotes colorectal cancer stem cell (CSC) features by destabilizing the NFκB–IκB complex, activating NFκB signaling, and upregulating BCL‐xL and COX2. In contrast to nuclear p21, cytoplasmic p21 enhances spheroid formation and stemness transcription factor CD133.
Arnatchai Maiuthed   +10 more
wiley   +1 more source

Strength through diversity: how cancers thrive when clones cooperate

open access: yesMolecular Oncology, EarlyView.
Intratumor heterogeneity can offer direct benefits to the tumor through cooperation between different clones. In this review, Kuiken et al. discuss existing evidence for clonal cooperativity to identify overarching principles, and highlight how novel technological developments could address remaining open questions.
Marije C. Kuiken   +3 more
wiley   +1 more source

Potential therapeutic targeting of BKCa channels in glioblastoma treatment

open access: yesMolecular Oncology, EarlyView.
This review summarizes current insights into the role of BKCa and mitoBKCa channels in glioblastoma biology, their potential classification as oncochannels, and the emerging pharmacological strategies targeting these channels, emphasizing the translational challenges in developing BKCa‐directed therapies for glioblastoma treatment.
Kamila Maliszewska‐Olejniczak   +4 more
wiley   +1 more source

Exploiting metabolic adaptations to overcome dabrafenib treatment resistance in melanoma cells

open access: yesMolecular Oncology, EarlyView.
We show that dabrafenib‐resistant melanoma cells undergo mitochondrial remodeling, leading to elevated respiration and ROS production balanced by stronger antioxidant defenses. This altered redox state promotes survival despite mitochondrial damage but renders resistant cells highly vulnerable to ROS‐inducing compounds such as PEITC, highlighting redox
Silvia Eller   +17 more
wiley   +1 more source

Home - About - Disclaimer - Privacy