Results 101 to 110 of about 1,238,092 (290)

Modeling hepatic fibrosis in TP53 knockout iPSC‐derived human liver organoids

open access: yesMolecular Oncology, EarlyView.
This study developed iPSC‐derived human liver organoids with TP53 gene knockout to model human liver fibrosis. These organoids showed elevated myofibroblast activation, early disease markers, and advanced fibrotic hallmarks. The use of profibrotic differentiation medium further amplified the fibrotic signature seen in the organoids.
Mustafa Karabicici   +8 more
wiley   +1 more source

Inhibition of CDK9 enhances AML cell death induced by combined venetoclax and azacitidine

open access: yesMolecular Oncology, EarlyView.
The CDK9 inhibitor AZD4573 downregulates c‐MYC and MCL‐1 to induce death of cytarabine (AraC)‐resistant AML cells. This enhances VEN + AZA‐induced cell death significantly more than any combination of two of the three drugs in AraC‐resistant AML cells.
Shuangshuang Wu   +18 more
wiley   +1 more source

Corrigendum

open access: yesInternational Journal of Nanomedicine, 2012
Jalil MA, Moongfangklang N, Innate K, Mitatha S, Ali J, Yupapin PP. Molecular network topology and reliability for multipurpose diagnosis. Int J Nanomedicine.
Jalil MA   +5 more
doaj  

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

Sustaining CyberWater-VisTrails: A Case Study in Software Upgrades and Reengineering

open access: yesInformation
This study focuses on the process of updating and upgrading a large-scale legacy software system to ensure its compatibility with modern computing environments.
Drew Bieger   +6 more
doaj   +1 more source

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

Patient‐specific pharmacogenomics demonstrates xCT as predictive therapeutic target in colon cancer with possible implications in tumor connectivity

open access: yesMolecular Oncology, EarlyView.
This study integrates transcriptomic profiling of matched tumor and healthy tissues from 32 colorectal cancer patients with functional validation in patient‐derived organoids, revealing dysregulated metabolic programs driven by overexpressed xCT (SLC7A11) and SLC3A2, identifying an oncogenic cystine/glutamate transporter signature linked to ...
Marco Strecker   +16 more
wiley   +1 more source

Data Analytics Techniques for Addressing Cloud Computing Resources Allocation Challenges: A Bibliometric Analysis Approach

open access: yesJournal of Information Systems and Informatics
The increase in the use of digital technology led to an increase in online activities. In this regard, many organizations adopted cloud computing systems to manage this online traffic.
Sello Prince Sekwatlakwatla   +1 more
doaj   +1 more source

Predictors of response and rational combinations for the novel MCL‐1 inhibitor MIK665 in acute myeloid leukemia

open access: yesMolecular Oncology, EarlyView.
This study characterizes the responses of primary acute myeloid leukemia (AML) patient samples to the MCL‐1 inhibitor MIK665. The results revealed that monocytic differentiation is associated with MIK665 sensitivity. Conversely, elevated ABCB1 expression is a potential biomarker of resistance to the treatment, which can be overcome by the combination ...
Joseph Saad   +17 more
wiley   +1 more source

Aggressive prostate cancer is associated with pericyte dysfunction

open access: yesMolecular Oncology, EarlyView.
Tumor‐produced TGF‐β drives pericyte dysfunction in prostate cancer. This dysfunction is characterized by downregulation of some canonical pericyte markers (i.e., DES, CSPG4, and ACTA2) while maintaining the expression of others (i.e., PDGFRB, NOTCH3, and RGS5).
Anabel Martinez‐Romero   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy