Results 121 to 130 of about 359,187 (310)

A synthetic benzoxazine dimer derivative targets c‐Myc to inhibit colorectal cancer progression

open access: yesMolecular Oncology, EarlyView.
Benzoxazine dimer derivatives bind to the bHLH‐LZ region of c‐Myc, disrupting c‐Myc/MAX complexes, which are evaluated from SAR analysis. This increases ubiquitination and reduces cellular c‐Myc. Impairing DNA repair mechanisms is shown through proteomic analysis.
Nicharat Sriratanasak   +8 more
wiley   +1 more source

The 2015 Annual Meeting of SETAC German Language Branch in Zurich (7-10 September, 2015): Ecotoxicology and environmental chemistry-from research to application. [PDF]

open access: yesEnviron Sci Eur, 2016
Werner I   +32 more
europepmc   +1 more source

Adaptaquin is selectively toxic to glioma stem cells through disruption of iron and cholesterol metabolism

open access: yesMolecular Oncology, EarlyView.
Adaptaquin selectively kills glioma stem cells while sparing differentiated brain cells. Transcriptomic and proteomic analyses show Adaptaquin disrupts iron and cholesterol homeostasis, with iron chelation amplifying cytotoxicity via cholesterol depletion, mitochondrial dysfunction, and elevated reactive oxygen species.
Adrien M. Vaquié   +16 more
wiley   +1 more source

THE ENVIRONMENTAL CHEMISTRY AND TOXICOLOGY OF SILVER [PDF]

open access: bronze, 1999
Anders Andrén, David E. Armstrong
openalex   +1 more source

Characterizing epithelial‐mesenchymal transition‐linked heterogeneity in breast cancer circulating tumor cells at a single‐cell level

open access: yesMolecular Oncology, EarlyView.
In over 50% of non‐metastatic breast cancer patients, circulating tumor cells (CTCs) along the whole epithelial‐mesenchymal transition spectrum are detected. Total CTC number and individual phenotypes relate to aggressive disease characteristics, including lymph node involvement and higher tumor proliferation. At the single‐cell level, mesenchymal CTCs
Justyna Topa   +14 more
wiley   +1 more source

Aggressive prostate cancer is associated with pericyte dysfunction

open access: yesMolecular Oncology, EarlyView.
Tumor‐produced TGF‐β drives pericyte dysfunction in prostate cancer. This dysfunction is characterized by downregulation of some canonical pericyte markers (i.e., DES, CSPG4, and ACTA2) while maintaining the expression of others (i.e., PDGFRB, NOTCH3, and RGS5).
Anabel Martinez‐Romero   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy