Results 271 to 280 of about 127,302 (344)
Immune Predictors of Radiotherapy Outcomes in Cervical Cancer
This study reveals dynamic immune remodeling in cervical cancer following radiotherapy. Single‐cell analysis identifies the C3/C3AR1 axis as a central mediator of epithelial–myeloid crosstalk, whose inhibition reduces treatment efficacy in mice. Guided by these insights, the eight‐feature machine‐learning model: Cervical Cancer Radiotherapy Immune ...
Linghao Wang +8 more
wiley +1 more source
Wedelolactone (WED), a natural TLR2 agonist, promotes neutrophil differentiation and enhances bactericidal function, offering a potential therapeutic strategy for neutropenia. Using a multi‐omics approach, this study reveals that WED activates the TLR2/MEK/ERK pathway, upregulating key transcription factors (PU.1, CEBPβ) to drive neutrophil development.
Long Wang +16 more
wiley +1 more source
Cinnamic‐hydroxamic‐acid derivatives (CHADs) are identified as novel inhibitors of the bacterial nucleoid‐associated protein HU, exhibiting potent antibacterial, anti‐biofilm (both inhibition and eradication), and DNA relaxation (anti‐supercoiling) activities. Moreover, CHADs demonstrate strong synergistic effects with multiple antibiotics.
Huan Chen +22 more
wiley +1 more source
Recent advances in materials and device engineering enable continuous, real‐time monitoring of muscle activity via wearable and implantable systems. This review critically summarizes emerging technologies for tracking electrophysiological, biomechanical, and oxygenation signals, outlines fundamental principles, and highlights key challenges and ...
Zhengwei Liao +4 more
wiley +1 more source
Enzyme-immobilized clay nanotube–chitosan membranes with sustainable biocatalytic activities
Jiajia Sun +5 more
openalex +2 more sources
This research deciphers the m6A transcriptome by profiling its sites and functional readout effects: from mRNA stability, translation to alternative splicing, across five different cell types. Machine learning model identifies novel m6A‐binding proteins DDX6 and FXR2 and novel m6A reader proteins FUBP3 and L1TD1.
Zhou Huang +11 more
wiley +1 more source
Precise Regulation of Membrane Proteins: From Physical Technology to Biomolecular Strategy
This review summarizes the emerging strategies for the precise regulation of membrane proteins using physical stimuli and biomolecule‐based tools. These methods provide new insights into cell regulation and offer promising directions for future disease treatment.
Xiu Zhao +6 more
wiley +1 more source
Aged HSF1 muscle‐specific knockout mice show deteriorated muscle atrophy and metabolic dysfunction, while active HSF1 overexpression improves muscle function via activating SIRT3 to deacetylate both PGC1α1 and PGC1α4, which boosts mitochondrial function and muscle hypertrophy in a fiber‐type specific manner, and induces FNDC5/Irisin for tissue ...
Jun Zhang +18 more
wiley +1 more source
BioE is a new diiron oxygenase that catalyzes the conversion of long‐chain acyl groups into pimeloyl thioester, initiating biotin synthesis. The overexpression of EmBioE disrupts lipid metabolic homeostasis, requiring repressor BioL to maintain a balance between long‐chain fatty acids and biotin synthesis.
Meng Zhang +9 more
wiley +1 more source
Combinations of integrative NMR spectroscopy and molecular dynamics simulations reveal the internal structural dynamics of single‐chain nanoparticles. Abstract Single‐chain nanoparticles (SCNPs) are formed by the collapse of individual polymer chains, generating entities comparable to proteins in size, internal structure, and function.
Federico Faglia +6 more
wiley +1 more source

