Results 201 to 210 of about 108,982 (307)

WDR5‐H3K4me3 Epigenetic Axis Promotes TRMT6‐Dependent tRNA M1A Modification to Facilitate Triple‐Negative Breast Cancer Progression by Suppressing Ferroptosis

open access: yesAdvanced Science, EarlyView.
Upregulated TRMT6 forms aberrant hypermethylation of a specific tRNA pool and serves as a predictor of poor prognosis in TNBC. This m1A modification in tRNAs enhances translation of FTH1 and FTL, reducing the pool of bioavailable Fe2⁺. Reduced Fe2+ availability impairs RSL3‐induced lipid peroxidation and tumor progression.
Yuqing Lei   +12 more
wiley   +1 more source

Dual Targeting of Mutant p53 and SNRPD2 via Engineered Exosomes Modulates Alternative Splicing to Suppress Ovarian Cancer

open access: yesAdvanced Science, EarlyView.
Mutant p53 drives oncogenic splicing to promote the progression of ovarian cancer by partnering with the spliceosome factor SNRPD2. Therefore, it is engineered iRGD‐exosomes to co‐deliver siRNAs against both targets. This approach restored tumor‐suppressive mRNA isoforms, effectively enhanced sensitivity to cisplatin, and ultimately blocked tumor ...
Wei Zhao   +14 more
wiley   +1 more source

NUSAP1 Recruits DAXX to Suppress HIF‐Driven Triple‐Negative Breast Cancer Progression

open access: yesAdvanced Science, EarlyView.
A double‐negative feedback loop is identified in TNBC where NUSAP1 bridges HIF and DAXX via its microtubule‐associated domain (MAD) to recruit SETDB1, repressing HIF transcriptional activity by depositing the H3K9me3 repressive mark on HIF target genes, while HIF itself suppresses NUSAP1.
Yating Du   +14 more
wiley   +1 more source

Flipping the Switch: MeCP2‐Mediated Lactylation Rewires Microglial Metabolism and Inflammation via the HK2/mTOR Axis in Poststroke Neuroinflammation

open access: yesAdvanced Science, EarlyView.
Stroke‐induced lactate accumulation promotes p300‐mediated lactylation of methyl‐CpG binding protein 2 (MeCP2) at lysine 210, which reprograms microglial metabolism toward glycolysis and activates the hexokinase 2 (HK2)/mTOR axis. This cascade promotes proinflammatory responses and impairs neurofunctional outcomes.
Zengyu Zhang   +12 more
wiley   +1 more source

Cancer Stem Cells Shift Metabolite Acetyl‐Coenzyme A to Abrogate the Differentiation of CD103+ T Cells

open access: yesAdvanced Science, EarlyView.
Lei et al. demonstrate that cancer stem cells (CSCs) play a pivotal role in impairing the differentiation of CD103+ T cells in patients with non‐small‐cell lung cancer. The key mechanism involves CSC‐derived acetyl‐CoA, which disrupts CD103+ T cell differentiation by sequentially inducing acetylation and ubiquitination of the Blimp‐1 protein. Targeting
Jiaxin Lei   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy