Results 31 to 40 of about 32,468,808 (365)

Error rate analysis for indoor wireless networks [PDF]

open access: yes, 1992
An attempt is made to predict the maximum data rates for a typical wireless computer network operating in an indoor frequency-selective environment. To lower the error rates for high-speed data transmission, the impact of techniques such as diversity ...
McGeehan, JP, Nix, AR, Norton, GH
core   +2 more sources

A New Approach to Probabilistic Rounding Error Analysis

open access: yesSIAM Journal on Scientific Computing, 2019
Traditional rounding error analysis in numerical linear algebra leads to backward error bounds involving the constant $\gamma^{}_n = nu/(1-nu)$, for a problem size $n$ and unit roundoff $u$.
N. Higham, Théo Mary
semanticscholar   +1 more source

Error Analysis of a Spherical Capacitive Sensor for the Micro-Clearance Detection in Spherical Joints

open access: yesMicromachines, 2020
Spherical joints have attracted increasing interest in the engineering applications of machine tools, industrial robots, medical equipment, and so on. As one of the promising methods of detecting the micro-clearance in spherical joints, the measurement ...
Wen Wang   +5 more
doaj   +1 more source

Errudite: Scalable, Reproducible, and Testable Error Analysis

open access: yesAnnual Meeting of the Association for Computational Linguistics, 2019
Though error analysis is crucial to understanding and improving NLP models, the common practice of manual, subjective categorization of a small sample of errors can yield biased and incomplete conclusions.
Tongshuang Sherry Wu   +3 more
semanticscholar   +1 more source

Error Analysis

open access: yes, 2022
The Routledge Handbook of Korean as a Second Language aims to define the field and to present the latest research in Korean as a second language (KSL). This chapter of Error Analysis provides a general critique of core issues, such as data sampling and identification, description, and explanation of errors, as well as key findings from EA studies in ...
Willy Dörfler   +5 more
openaire   +3 more sources

The Squared-Error of Generalized LASSO: A Precise Analysis [PDF]

open access: yes, 2013
We consider the problem of estimating an unknown signal $x_0$ from noisy linear observations $y = Ax_0 + z\in R^m$. In many practical instances, $x_0$ has a certain structure that can be captured by a structure inducing convex function $f(\cdot)$.
Hassibi, Babak   +2 more
core   +2 more sources

Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis

open access: yesBioinorganic Chemistry and Applications, 2018
Reports about presence and toxicity of Cd2+ in different chemical industrial effluents prompted the researchers to explore some economical, rapid, sensitive, and accurate methods for its determination and removal from aqueous systems.
F. Batool   +4 more
semanticscholar   +1 more source

A Comparison and Error Analysis of Error Bounds

open access: yesInternational Journal of Analysis and Applications, 2018
In this paper, we present an error analysis with the help of Ostrowski type inequalities for n-times differentiable mappings by using n-times peano kernel. A comparison is also presented which shows that obtained error bounds are better than the previous
A. R. Kashif   +3 more
doaj   +2 more sources

Numerical Analysis of Alternating Direction Implicit Orthogonal Spline Collocation Scheme for the Hyperbolic Integrodifferential Equation with a Weakly Singular Kernel

open access: yesMathematics, 2022
This paper studies an alternating direction implicit orthogonal spline collocation (ADIOSC) technique for calculating the numerical solution of the hyperbolic integrodifferential problem with a weakly singular kernel in the two-dimensional domain.
Qiong Huang   +2 more
doaj   +1 more source

Precise Error Analysis of Regularized $M$ -Estimators in High Dimensions [PDF]

open access: yesIEEE Transactions on Information Theory, 2016
A popular approach for estimating an unknown signal $ \mathbf {x}_{0}\in \mathbb {R} ^{n}$ from noisy, linear measurements $ \mathbf {y}= \mathbf {A} \mathbf {x} _{0}+ \mathbf {z}\in \mathbb {R}^{m}$ is via solving a so called regularized $M ...
Christos Thrampoulidis   +2 more
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy