Results 251 to 260 of about 371,981 (337)

Engineered Plasmonic and Fluorescent Nanomaterials for Biosensing, Motion, Imaging, and Therapeutic Applications

open access: yesAdvanced Materials, EarlyView.
A schematic illustration of how noble metals can be used to create nanoparticles (NPs) or nanoclusters (NCs). Noble metal NPs, due to their plasmonic properties, enable photothermal therapy and surface‐enhanced Raman scattering (SERS). In contrast, NCs, which lack a plasmonic resonance band, exhibit fluorescence, making them ideal for bioimaging ...
David Esporrín‐Ubieto   +3 more
wiley   +1 more source

Biomimetic 3D‐Printed Adaptive Hydrogel Bioadhesives Featuring Superior Infection Resistance for Challenging Tissue Adhesion, Hemostasis, and Healthcare

open access: yesAdvanced Materials, EarlyView.
Biomimetic 3D‐printed hydrogel bioadhesives (PTLAs) are designed to address the limitations of existing bioadhesives, offering solutions for challenging tissue adhesion and enhanced healthcare. These PTLAs feature robust wet/underwater tissue adhesion/sealing, superior freeze/pressure and infection resistance, and adaptive self‐healing/gelling capacity,
Qi Wu   +4 more
wiley   +1 more source

Interactions Between Active Matters and Endogenous Fields

open access: yesAdvanced Materials, EarlyView.
This review synthesizes endogenous field information and computational methods in contexts such as cancer, wounds, and biofilms. It organizes NAMs and AAMs by sensing, transmitting, and executing functions, compares their limitations, and from these contrasts proposes design strategies for next‐generation AAMs, offering perspectives to foster ...
Jinwei Lin   +6 more
wiley   +1 more source

Terahertz Electronic and Spin Currents in Wafer‐Scale Van der Waals Bi2Se3/WSe2 Heterostructures and Polymorphs

open access: yesAdvanced Materials, EarlyView.
Van der Waals heterostructures offer exciting possibilities for artificial materials with unique optical, electronic, and spintronic properties. However, their use in the terahertz (THz) range is limited due to material constraints. This study demonstrates scalable, large‐area, crystalline 2D heterostructures, combining topological insulators ...
M. Mičica   +22 more
wiley   +1 more source

Spatially‐Controlled Planar Guided Crystallization of Low‐Loss Phase Change Materials for Programmable Photonics

open access: yesAdvanced Materials, EarlyView.
The concept of spatially‐controlled planar guided crystallization is a novel method for programming the growth of optically homogeneous low‐loss Sb2S3 phase‐change material (PCM), leveraging the directional crystallization within confined channels.
Fouad Bentata   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy