Results 171 to 180 of about 5,346,682 (363)

Fast food medicine?

open access: yesCanadian Journal of Emergency Medicine, 2023
openaire   +2 more sources

Bioorthogonal Engineering of Cellular Microenvironments Using Isonitrile Ligations

open access: yesAdvanced Functional Materials, EarlyView.
Highly selective chemistries are required for fabrication and post‐cross–linking modification of cell‐encapsulating hydrogels used in tissue engineering applications. Isonitrile ligation reactions represent a promising class of bioorthogonal chemistries for engineering hydrogel‐based cellular microenvironments. Isonitrile‐based hydrogels are stable and
Ping Zhou   +2 more
wiley   +1 more source

Fatty acid composition of regular meals, box lunches and fast foods.

open access: bronze, 1988
Toshichika Takita   +3 more
openalex   +2 more sources

Multi‐Scaled Cellulosic Nanonetworks from Tunicates

open access: yesAdvanced Functional Materials, EarlyView.
Microbial and plant nanonetworks of cellulose have enabled a wide range of high‐performance yet sustainable materials. Herein, a third class of cellulosic nanonetworks is showcased by exploiting the only animal tissue‐producing cellulose nanofibers, i.e., ascidians. An ultrastructure including spherical cells and a microvasculature with diameters of 50–
Mano Govindharaj   +10 more
wiley   +1 more source

All‐Cellulose‐Based Photonic Glitters

open access: yesAdvanced Functional Materials, EarlyView.
Uniform, disc‐shaped photonic CNC glitters with adjustable structural colors and diameters are fabricated on hydrophilic ethyl cellulose films using electrospray deposition. By employing patterned ethyl cellulose films with pre‐designed hydrophilic regions, photonic patterns can be created with these all‐cellulose‐based glitters, demonstrating their ...
Ting Wang   +5 more
wiley   +1 more source

Fast foods perception among adolescents by gender and weight status

open access: yesNutrition and Health, 2017
S. Allehdan   +5 more
semanticscholar   +1 more source

Optimizing Angiopep‐2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

open access: yesAdvanced Functional Materials, EarlyView.
The Angiopep‐2 peptide density on polymeric nanoparticles significantly impacts blood–brain barrier (BBB) penetration. This study explores this nuanced relationship using various in vitro models and in vivo assays, revealing that dynamic models better predict BBB penetration.
Weisen Zhang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy