Results 211 to 220 of about 354,159 (381)

Structure, Mechanics, and Mechanobiology of Fibrocartilage Pericellular Matrix Mediated by Type V Collagen

open access: yesAdvanced Science, EarlyView.
This study defines the structure, mechanics, and mechanobiology of the fibrocartilage pericellular matrix (PCM) using the murine meniscus, showing how collagen V deficiency alters PCM properties and disrupts cell mechanosensitive signaling. Findings emphasize the critical role of PCM in fibrocartilage mechanobiology and suggest targeting it can enhance
Chao Wang   +13 more
wiley   +1 more source

Piezoelectric Biomaterials for Bone Regeneration: Roadmap from Dipole to Osteogenesis

open access: yesAdvanced Science, EarlyView.
Piezoelectric biomaterials convert mechanical forces into electrical signals, offering novel strategies to restore and modulate bone microenvironments for tissue engineering. This review examines molecular dipole origins, spatial arrangements, and pseudo‐piezoelectric mechanisms and highlights dipole‐engineering techniques for osteogenesis regulation ...
Xiyao Ni   +7 more
wiley   +1 more source

Solution and surface effects on plasma fibronectin structure. [PDF]

open access: bronze, 1983
Nancy M. Tooney   +4 more
openalex   +1 more source

Apoptotic Bodies Restore NAD and Mitochondrial Homeostasis in Fibroblasts

open access: yesAdvanced Science, EarlyView.
Mesenchymal stem cell‐derived apoptotic bodies (MSC‐ABs) target keloid fibroblasts (KFs), restoring nicotinamide adenine dinucleotide (NAD) metabolism and mitochondrial function, suppressing collagen overproduction, and rebalancing tissue homeostasis, offering a novel therapy for keloid.
Shutong Qian   +10 more
wiley   +1 more source

Fibronectin in the Skin

open access: yesJournal of Investigative Dermatology, 1983
openaire   +3 more sources

An imaging-guided self-amplifying photo-immunotherapeutic nanoparticle for STING pathway activation and enhanced cancer therapy. [PDF]

open access: yesJ Nanobiotechnology
Chen Q   +12 more
europepmc   +1 more source

An Injectable BMP‐2‐Releasing Porous Hydrogel Regulating the Paracrine Effects of ADSCs Promotes Tendon‐to‐Bone Healing in Rotator Cuff Repair

open access: yesAdvanced Science, EarlyView.
This study designs an injectable porous hydrogel (HMs/MBs/ADSCs) integrating hollow microspheres for sustained BMP‐2 release to enhance adipose‐derived stem cells' paracrine effect. It accelerates tendon‐bone healing in rat rotator cuff injuries via spatiotemporal regulation: early AMPK‐mediated mitochondrial protection and late TGF‐β/Smad2/3‐driven ...
Meijuan Yuan   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy