Results 121 to 130 of about 99,741 (299)
This review outlines how understanding bone's biology, hierarchical architecture, and mechanical anisotropy informs the design of lattice structures that replicate bone morphology and mechanical behavior. Additive manufacturing enables the fabrication of orthopedic implants that incorporate such structures using a range of engineering materials ...
Stylianos Kechagias +4 more
wiley +1 more source
Ductility Tuning via Cluster Network Characteristics of Porous Components
Network optimization via cluster characteristics induced by interaction of stress concentration is proposed, demonstrating increased cluster size and dispersion in non‐uniform porous components. The optimized structures exhibit, for the first time, that enhanced ductility and damage progression is controllable through zigzag cluster network designed by
Ryota Toyoba +4 more
wiley +1 more source
Advances in Solid‐Phase Processing Techniques: Innovations, Applications, and Future Perspectives
Based on practical manufacturing challenges, this review examines advanced solid‐phase processing techniques that overcome the inherent limitations of conventional melting‐based and traditional solid‐phase manufacturing, enabling the production of higher‐performance components at reduced cost through process innovation and improved supply‐chain ...
Tianhao Wang
wiley +1 more source
Mechanical behavior and fracture characteristics of off-axis fiber composites. 2: Theory and comparisons [PDF]
The mechanical behavior and stresses inducing fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated theoretically.
Chamis, C. C., Sinclair, J. H.
core +1 more source
Advances in Safe, Flexible, and Stretchable Batteries for Wearable Applications
Unlike previous reviews centered on component‐based deformability, this work highlights safety‐driven design strategies for flexible and stretchable batteries. By integrating material‐level engineering, geometry‐controlled structures, biocompatibility, and self‐protection mechanisms, it establishes a unified framework that connects mechanical ...
Hyewon Kang +4 more
wiley +1 more source
Collision‐Resilient Winged Drones Enabled by Tensegrity Structures
Based on structures of birds such as the woodpeck, this article presents the collision‐resilient aerial robot, SWIFT. SWIFT leverages tensegrity structures in the fuselage and wings which allow it to undergo large deformations in a crash, without sustaining damage. Experiments show that SWIFT can reduce impact forces by 70% over conventional structures.
Omar Aloui +5 more
wiley +1 more source
3D Printing of Soft Robotic Systems: Advances in Fabrication Strategies and Future Trends
Collectively, this review systematically examines 3D‐printed soft robotics, encompassing material selections, function integration, and manufacturing methodologies. Meanwhile, fabrication strategies are analyzed in order of increasing complexity, highlighting persistent challenges with proposed solutions.
Changjiang Liu +5 more
wiley +1 more source
Dynamic crack initiation by Finite Fracture Mechanics
Chao Correas, A +3 more
openaire +1 more source
To address challenges in high‐throughput intestinal sampling with sealed containment and target drug delivery, we developed a dual‐functional ingestible passive capsule with a dual‐triggered control system based on pH‐response and mechanical actuation.
Libing Huang +9 more
wiley +1 more source
Application of machine learning in fracture analysis of edge crack semi-infinite elastic plate
This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks.
Saeed H. Moghtaderi +3 more
doaj +1 more source

