Results 31 to 40 of about 1,555,219 (293)
13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.
Frontiers in Bioengineering and Biotechnology, 2016 Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae.Amit Ghosh, David Ando, Jennifer Gin, Weerawat Runguphan, Charles Denby, George Wang, Edward Emmanuel Kweku Baidoo, Chris Shymansky, Jay Keasling, Hector Garcia Martin +9 moredoaj +1 more sourceMeasurement of the Atmospheric $\nu_e$ Spectrum with IceCube [PDF]
, 2015 We present a measurement of the atmospheric $\nu_e$ spectrum at energies
between 0.1 TeV and 100 TeV using data from the first year of the complete
IceCube detector. Atmospheric $\nu_e$ originate mainly from the decays of kaons
produced in cosmic-ray air Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Altmann, D., Anderson, T., Archinger, M., Arguelles, C., Arlen, T. C., Auffenberg, J., Bai, X., Barwick, S. W., Baum, V., Bay, R., Beatty, J. J., Becker, K. -H., Beiser, E., BenZvi, S., Berghaus, P., Berley, D., Bernardini, E., Bernhard, A., Besson, D. Z., Binder, G., Bindig, D., Bissok, M., Blaufuss, E., Blumenthal, J., Boersma, D. J., Bohm, C., Bos, F., Bose, D., Botner, O., Braun, J., Brayeur, L., Bretz, H. -P., Brown, A. M., Buzinsky, N., Börner, M., Böser, S., Casey, J., Casier, M., Cheung, E., Chirkin, D., Christov, A., Christy, B., Clark, K., Classen, L., Coenders, S., Cowen, D. F., Daughhetee, J., Davis, J. C., Day, M., de André, J. P. A. M., De Clercq, C., De Ridder, S., de Vries, K. D., de Wasseige, G., de With, M., Dembinski, H., Desiati, P., DeYoung, T., Dumm, J. P., Dunkman, M., Díaz-Vélez, J. C., Eagan, R., Eberhardt, B., Ehrhardt, T., Eichmann, B., Euler, S., Evenson, P. A., Fadiran, O., Fahey, S., Fazely, A. R., Fedynitch, A., Feintzeig, J., Felde, J., Filimonov, K., Finley, C., Fischer-Wasels, T., Flis, S., Fuchs, T., Gaior, R., Gaisser, T. K., Gallagher, J., Gerhardt, L., Ghorbani, K., Gier, D., Gladstone, L., Glagla, M., Glüsenkamp, T., Goldschmidt, A., Golup, G., Gonzalez, J. G., Goodman, J. A., Grant, D., Gretskov, P., Groh, J. C., Groß, A., Góra, D., Ha, C., Haack, C., Hallgren, A., Halzen, F., Hansmann, B., Hanson, K., Hebecker, D., Heereman, D., Helbing, K., Hellauer, R., Hellwig, D., Heros, C. Pérez de los, Hickford, S., Hignight, J., Hill, G. C., Hoffman, K. D., Hoffmann, R., Homeier, A., Hoshina, K., Huang, F., Huber, M., Huelsnitz, W., Hulth, P. O., Hultqvist, K., IceCube Collaboration, In, S., Ishihara, A., Ismail, A. Haj, Jacobi, E., Japaridze, G. S., Jero, K., Jurkovic, M., Kaminsky, B., Kappes, A., Karg, T., Karle, A., Kauer, M., Keivani, A., Kelley, J. L., Kemp, J., Kheirandish, A., Kiryluk, J., Klein, S. R., Kläs, J., Kohnen, G., Kolanoski, H., Konietz, R., Koob, A., Kopper, C., Kopper, S., Koskinen, D. J., Kowalski, M., Krings, K., Kroll, G., Kroll, M., Kunnen, J., Kurahashi, N., Kuwabara, T., Köpke, L., Labare, M., Lanfranchi, J. L., Larson, M. J., Lesiak-Bzdak, M., Leuermann, M., Leuner, J., Lünemann, J., Madsen, J., Maggi, G., Mahn, K. B. M., Maruyama, R., Mase, K., Matis, H. S., Maunu, R., McNally, F., Meagher, K., Medici, M., Meli, A., Menne, T., Merino, G., Meures, T., Miarecki, S., Middell, E., Middlemas, E., Miller, J., Mohrmann, L., Montaruli, T., Morse, R., Nahnhauer, R., Naumann, U., Niederhausen, H., Nowicki, S. C., Nygren, D. R., O'Murchadha, A., Obertacke, A., Olivas, A., Omairat, A., Palczewski, T., Paul, L., Pepper, J. A., Pfendner, C., Pieloth, D., Pinat, E., Posselt, J., Price, P. B., Przybylski, G. T., Pütz, J., Quinnan, M., Rameez, M., Rawlins, K., Redl, P., Reimann, R., Relich, M., Resconi, E., Rhode, W., Richman, M., Richter, S., Riedel, B., Robertson, S., Rongen, M., Rott, C., Ruhe, T., Ruzybayev, B., Ryckbosch, D., Rädel, L., Saba, S. M., Sabbatini, L., Sander, H. -G., Sandrock, A., Sandroos, J., Sarkar, S., Schatto, K., Scheriau, F., Schimp, M., Schmidt, T., Schmitz, M., Schoenen, S., Schukraft, A., Schulte, L., Schulz, O., Schöneberg, S., Schönwald, A., Seckel, D., Sestayo, Y., Seunarine, S., Shanidze, R., Silva, A. H. Cruz, Smith, M. W. E., Soldin, D., Spiczak, G. M., Spiering, C., Stahlberg, M., Stamatikos, M., Stanev, T., Stanisha, N. A., Stasik, A., Stezelberger, T., Stokstad, R. G., Strahler, E. A., Strotjohann, N. L., Ström, R., Stößl, A., Sullivan, G. W., Sutherland, M., Taavola, H., Taboada, I., Ter-Antonyan, S., Terliuk, A., Tešić, G., Tilav, S., Tjus, J. Becker, Toale, P. A., Tobin, M. N., Tosi, D., Tselengidou, M., Unger, E., Usner, M., Vallecorsa, S., van Eijndhoven, N., van Santen, J., Vandenbroucke, J., Vanheule, S., Vehring, M., Voge, M., Vraeghe, M., Walck, C., Wallraff, M., Wandkowsky, N., Weaver, Ch., Wendt, C., Westerhoff, S., Whelan, B. J., Whitehorn, N., Wichary, C., Wiebe, K., Wiebusch, C. H., Wille, L., Williams, D. R., Wissing, H., Wolf, M., Wood, T. R., Woschnagg, K., Xu, D. L., Xu, X. W., Xu, Y., Yanez, J. P., Yodh, G., Yoshida, S., Zarzhitsky, P., Zoll, M. +310 morecore +3 more sourcesMetabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes [PDF]
Metabolites, 2020 Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes.Yujue Wang, Fredric E. Wondisford, Chi Song, Teng Zhang, Xiaoyang Su +4 moreopenaire +3 more sourcesThermodynamics-Based Metabolic Flux Analysis [PDF]
Biophysical Journal, 2007 A new form of metabolic flux analysis (MFA) called thermodynamics-based metabolic flux analysis (TMFA) is introduced with the capability of generating thermodynamically feasible flux and metabolite activity profiles on a genome scale. TMFA involves the use of a set of linear thermodynamic constraints in addition to the mass balance constraints ...Henry, Christopher S., Broadbelt, Linda J., Hatzimanikatis, Vassily +2 moreopenaire +2 more sourcesA cure for the sonic point glitch [PDF]
, 2000 Among the various numerical schemes developed since the '80s for the computation of the compressible Euler equations, the vast majority produce in certain cases spurious pressure glitches at sonic points.Gressier, Jérémie, Moschetta, Jean-Marc +1 morecore +1 more sourceUnknowns after the SNO Charged-Current Measurement [PDF]
, 2001 We perform a model-independent analysis of solar neutrino flux rates
including the recent charged-current measurement at the Sudbury Neutrino
Observatory (SNO). We derive a universal sum rule involving SNO and
SuperKamiokande rates, and show that the SNO A. Gouvea, B. Cleveland, D. Groom, D. Marfatia, J. Bahcall, J. Bahcall, K. Whisnant, M. Gonzalez-Garcia, Q. Ahmad, R. Raghavan, S. Bilenkii, V. Barger +11 morecore +2 more sources