Results 231 to 240 of about 1,689,750 (280)
Some of the next articles are maybe not open access.
2015
We define the concepts of category, functor, and morphism of functors (‘natural transformation’). The set-theoretic difficulty in treating cases like the category of all sets is handled using Grothendieck’s Axiom of Universes. Epimorphisms, monomorphisms, and similar concepts are investigated. The concept of “enriched categories” (for example, additive
openaire +1 more source
We define the concepts of category, functor, and morphism of functors (‘natural transformation’). The set-theoretic difficulty in treating cases like the category of all sets is handled using Grothendieck’s Axiom of Universes. Epimorphisms, monomorphisms, and similar concepts are investigated. The concept of “enriched categories” (for example, additive
openaire +1 more source
2022
En esta comunicación extendemos el Teorema de Green a categorías de funtores aditivos sobre una categoría pequeña, introducimos la noción de "rooted small preadditive category" y caracterizamos los funtores proyectivos e inyectivos sobre tal categoría.
openaire +1 more source
En esta comunicación extendemos el Teorema de Green a categorías de funtores aditivos sobre una categoría pequeña, introducimos la noción de "rooted small preadditive category" y caracterizamos los funtores proyectivos e inyectivos sobre tal categoría.
openaire +1 more source
Functor - Category Semantics of Programming Languages and Logics
Category Theory and Computer Science, 1985R. D. Tennent
semanticscholar +1 more source
Category-functor Modelling of Natural Systems
Cybernetics and systems, 1999A. Levich, A. V. Solov'Yov
semanticscholar +1 more source
Categories of Categories and Categories of Functors
1972The composition of functors in 2.2.6 suggests the study of categories whose objects are categories and whose morphisms are functors. 2.2.7 leads to categories whose objects are functors C→D and whose morphisms are natural transformation. However, familiar antinomies like “the set of all sets.” or “the set of all sets not containing themselves as an ...
openaire +1 more source
Capacity functor in the category of compacta
, 2008M. Zarichnyǐ, O. Nykyforchyn
semanticscholar +1 more source
ON THE DERIVED CATEGORY AND K-FUNCTOR OF COHERENT SHEAVES ON INTERSECTIONS OF QUADRICS
, 1989M. Kapranov
semanticscholar +1 more source

