Results 51 to 60 of about 53,379 (231)
LOCAL EXTENSIONS WITH IMPERFECT RESIDUE FIELD
The paper deals with some aspects of general local fields and tries to elucidate some obscure facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce.
Akram Lbekkouri
doaj +1 more source
The automorphisms and error orbits of Reed – Solomon codes
The purpose of this work with its results presented in the article was to develop and transfer to the class of Reed – Solomon codes (RS-codes) the basic provisions of the theory of syndrome norms (TNS), previously developed for the noise-resistant coding
S. I. Semyonov, V. A. Lipnitsky
doaj +1 more source
Chebotarev's theorem for cyclic groups of order pq$pq$ and an uncertainty principle
Abstract Let p$p$ be a prime number and ζp$\zeta _p$ a primitive p$p$th root of unity. Chebotarev's theorem states that every square submatrix of the p×p$p \times p$ matrix (ζpij)i,j=0p−1$(\zeta _p^{ij})_{i,j=0}^{p-1}$ is nonsingular. In this paper, we prove the same for principal submatrices of (ζnij)i,j=0n−1$(\zeta _n^{ij})_{i,j=0}^{n-1}$, when n=pr ...
Maria Loukaki
wiley +1 more source
A note on the cohomology of moduli spaces of local shtukas
Abstract We study localized versions of spectral action of Fargues–Scholze, using methods from higher algebra. As our main motivation and application, we deduce a formula for the cohomology of moduli spaces of local shtukas under certain genericity assumptions, and discuss its relation with the Kottwitz conjecture.
David Hansen, Christian Johansson
wiley +1 more source
Iitaka fibrations and integral points: A family of arbitrarily polarized spherical threefolds
Abstract Studying Manin's program for a family of spherical log Fano threefolds, we determine the asymptotic number of integral points whose height associated with an arbitrary ample line bundle is bounded. This confirms a recent conjecture by Santens and sheds new light on the logarithmic analog of Iitaka fibrations, which have not yet been adequately
Ulrich Derenthal, Florian Wilsch
wiley +1 more source
The m$m$‐step solvable anabelian geometry of mixed‐characteristic local fields
Abstract Let K$K$ be a mixed‐characteristic local field. For an integer m⩾0$m \geqslant 0$, we denote by Km/K$K^m / K$ the maximal m$m$‐step solvable extension of K$K$, and by GKm$G_K^m$ the maximal m$m$‐step solvable quotient of the absolute Galois group GK$G_K$ of K$K$.
Seung‐Hyeon Hyeon
wiley +1 more source
GRUPOS DE PERMUTAÇÕES E GRUPOS FINITOS SIMPLES
The normality of subgroups in a finite group has a property discovered by E. Galois in 1832, study-group of permutations of roots of polynomial equations.
Lauro Maycon Fernandes Ferreira +2 more
doaj +1 more source
On Contradiction and Inclusion Using Functional Degrees
The notion of inclusion is a cornerstone in set theory and therefore, its generalization in fuzzy set theory is of great interest. The degree of f-inclusion is one generalization of such a notion that differs from others existing in the literature ...
Nicolás Madrid, Manuel Ojeda-Aciego
doaj +1 more source
Minimal projective varieties satisfying Miyaoka's equality
Abstract In this paper, we establish a structure theorem for a minimal projective klt variety X$X$ satisfying Miyaoka's equality 3c2(X)=c1(X)2$3c_2(X) = c_1(X)^2$. Specifically, we prove that the canonical divisor KX$K_X$ is semi‐ample and that the Kodaira dimension κ(KX)$\kappa (K_X)$ is equal to 0, 1, or 2. Furthermore, based on this abundance result,
Masataka Iwai +2 more
wiley +1 more source
Symmetric products and puncturing Campana‐special varieties
Abstract We give a counterexample to the Arithmetic Puncturing Conjecture and Geometric Puncturing Conjecture of Hassett–Tschinkel using symmetric powers of uniruled surfaces, and propose a corrected conjecture inspired by Campana's conjectures on special varieties.
Finn Bartsch +2 more
wiley +1 more source

