Results 61 to 70 of about 50,186 (313)
Numerical simulation and analysis of multi-physics fields in three-phase enclosed GIL
The multi-physics field distribution (including electric, magnetic, thermal, and flow fields) inside gas-insulated transmission lines (GIL) offers crucial theoretical support for the design and operational monitoring of GIL systems.
XIE Shengyi +5 more
doaj +1 more source
Electrical inspection mark of UHV transmission line based on GaN material
At present, the traditional insulated pole electroscope is used for electrical inspection in high-voltage transmission lines. However, when it is used in ultra-high voltage (UHV) transmission lines, the length of its insulated rod is large, and there are
CHEN Kang +7 more
doaj +1 more source
A Transmissive X-ray Polarimeter Design For Hard X-ray Focusing Telescopes
The X-ray Timing and Polarization (XTP) is a mission concept for a future space borne X-ray observatory and is currently selected for early phase study. We present a new design of X-ray polarimeter based on the time projection gas chamber.
Deng, Zhi +13 more
core +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Tailoring of electron flow current in magnetically insulated transmission lines
It is desirable to optimize (minimizing both the inductance and electron flow) the magnetically insulated vacuum sections of low impedance pulsed-power drivers. The goal of low inductance is understandable from basic efficiency arguments. The goal of low
J. P. Martin +3 more
doaj +1 more source
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source
Developing Future UK Energy Performance Standards: The St Nicholas Court project, Final Report [PDF]
The St Nicholas Court Project was set up to explore the implications of an enhanced energy performance standard for new housing for the design, construction and performance of timber framed dwellings.
Bell, M, Lowe, RJ, Roberts, D
core
Electron–Matter Interactions During Electron Beam Nanopatterning
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima +2 more
wiley +1 more source
Pullulan, a biomass‐derived polysaccharide, is transformed into transparent optical fibers using a solvent‐free borax hydrogel‐spinning method. The fibers outperform PMMA with ≈200 MPa tensile strength and 200 °C stability, while uniquely guiding visible‐to‐NIR light and enabling additive‐free humidity sensing.
Yuya Fukata +4 more
wiley +1 more source
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim +13 more
wiley +1 more source

