Results 31 to 40 of about 294,757 (224)
Interference effects in isolated Josephson junction arrays with geometric symmetries
As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable.
A. Shnirman+21 more
core +1 more source
A lack of standard approaches for testing and reporting the performance of metal halide perovskites and organic semiconductor radiation detectors has resulted in inconsistent interpretation of performance parameters, impeding progress in the field. This Perspective recommends key metrics and experimental details, which are suggested for reporting in ...
Jessie A. Posar+8 more
wiley +1 more source
Scalability of spin FPGA: A Reconfigurable Architecture based on spin MOSFET
Scalability of Field Programmable Gate Array (FPGA) using spin MOSFET (spin FPGA) with magnetocurrent (MC) ratio in the range of 100% to 1000% is discussed for the first time. Area and speed of million-gate spin FPGA are numerically benchmarked with CMOS
Gao Y.+11 more
core +1 more source
Gate‐Tunable Hole Transport in In‐Plane Ge Nanowires by V‐Groove Confined Selective Epitaxy
Ge nanowires are promising for hole spin‐based quantum processors, requiring direct integration onto Si wafers. This work introduces V‐groove‐confined selective epitaxy for in‐plane nanowire growth on Si. Structural and low‐temperature transport measurements confirm their high crystalline quality, gate‐tunable hole densities, and mobility.
Santhanu Panikar Ramanandan+11 more
wiley +1 more source
Carbon Nanotube 3D Integrated Circuits: From Design to Applications
As Moore's law approaches its physical limits, carbon nanotube (CNT) 3D integrated circuits (ICs) emerge as a promising alternative due to the miniaturization, high mobility, and low power consumption. CNT 3D ICs in optoelectronics, memory, and monolithic ICs are reviewed while addressing challenges in fabrication, design, and integration.
Han‐Yang Liu+3 more
wiley +1 more source
Tunneling Qubit Operation on a Protected Josephson Junction Array
We discuss a protected quantum computation process based on a hexagon Josephson junction array. Qubits are encoded in the punctured array, which is topologically protected. The degeneracy is related to the number of holes.
J. Preskill+5 more
core +1 more source
Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai+8 more
wiley +1 more source
Collapse of superconductivity in a hybrid tin-graphene Josephson junction array
When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction ...
A Allain+49 more
core +3 more sources
Heterojunctions combining halide perovskites with low‐dimensional materials enhance optoelectronic devices by enabling precise charge control and improving efficiency, stability, and speed. These synergies advance flexible electronics, wearable sensors, and neuromorphic computing, mimicking biological vision for real‐time image analysis and intelligent
Yu‐Jin Du+11 more
wiley +1 more source
An all‐in‐one analog AI accelerator is presented, enabling on‐chip training, weight retention, and long‐term inference acceleration. It leverages a BEOL‐integrated CMO/HfOx ReRAM array with low‐voltage operation (<1.5 V), multi‐bit capability over 32 states, low programming noise (10 nS), and near‐ideal weight transfer.
Donato Francesco Falcone+11 more
wiley +1 more source