Results 131 to 140 of about 343,821 (333)

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Generalized strongly n-polynomial convex functions and related inequalities

open access: yesBoundary Value Problems
This paper focuses on introducing and examining the class of generalized strongly n-polynomial convex functions. Relationships between these functions and other types of convex functions are explored.
Serap Özcan   +3 more
doaj   +1 more source

Macrophage Phenotype Detection Methodology on Textured Surfaces via Nuclear Morphology Using Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
A novel machine learning approach classifies macrophage phenotypes with up to 98% accuracy using only nuclear morphology from DAPI‐stained images. Bypassing traditional surface markers, the method proves robust even on complex textured biomaterial surfaces. It offers a simpler, faster alternative for studying macrophage behavior in various experimental
Oleh Mezhenskyi   +5 more
wiley   +1 more source

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

A Physics Constrained Machine Learning Pipeline for Young's Modulus Prediction in Multimaterial Hyperelastic Cylinders Guided by Contact Mechanics

open access: yesAdvanced Intelligent Discovery, EarlyView.
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas   +4 more
wiley   +1 more source

Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples [PDF]

open access: gold, 2023
Muzammil Mukhtar   +6 more
openalex   +1 more source

Home - About - Disclaimer - Privacy