Results 81 to 90 of about 128,746 (262)

Stacked Generative Adversarial Networks [PDF]

open access: green, 2016
Xun Huang   +4 more
openalex   +1 more source

Deep Learning‐Assisted Design of Mechanical Metamaterials

open access: yesAdvanced Intelligent Discovery, EarlyView.
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong   +5 more
wiley   +1 more source

Infrared Dim and Small Target Sequence Dataset Generation Method Based on Generative Adversarial Networks [PDF]

open access: gold, 2023
Leihong Zhang   +6 more
openalex   +1 more source

Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook

open access: yesAdvanced Intelligent Discovery, EarlyView.
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang   +4 more
wiley   +1 more source

Predicting the Evolution of White Matter Hyperintensities in Brain MRI using Generative Adversarial Networks and Irregularity Map [PDF]

open access: gold, 2019
Muhammad Febrian Rachmadi   +4 more
openalex   +1 more source

Toward Knowledge‐Guided AI for Inverse Design in Manufacturing: A Perspective on Domain, Physics, and Human–AI Synergy

open access: yesAdvanced Intelligent Discovery, EarlyView.
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee   +3 more
wiley   +1 more source

A Review on Recent Trends of Bioinspired Soft Robotics: Actuators, Control Methods, Materials Selection, Sensors, Challenges, and Future Prospects

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
This article reviews the current state of bioinspired soft robotics. The article discusses soft actuators, soft sensors, materials selection, and control methods used in bioinspired soft robotics. It also highlights the challenges and future prospects of this field.
Abhirup Sarker   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy