Results 101 to 110 of about 47,601 (323)

Disrupting CSPG‐Driven Microglia–Astrocyte Crosstalk Enables Scar‐Free Repair in Spinal Cord Injury

open access: yesAdvanced Science, EarlyView.
This study identifies CSPGs as key drivers of glial scar maturation after spinal cord injury by reprogramming microglial metabolism and inducing astrocyte fibrosis. To address this, a reactive oxygen species‐responsive, reactive astrocyte‐targeted ChABC gene delivery system is designed to locally degrade CSPGs, precisely disrupt maladaptive glial ...
Yufei Zheng   +10 more
wiley   +1 more source

Endothelial Cell‐Based Vascular Bandages for Blood–Brain Barrier Repair and Targeted siRNA Delivery

open access: yesAdvanced Science, EarlyView.
mECs restore blood–brain barrier function after cerebral ischemia–reperfusion by simultaneously targeting, supporting, and regulating the damaged vasculature. mECs home to injured cerebral vessels through interactions with highly expressed VLA‐4, reinforce endothelial integrity by forming new junctions, and, upon OGD‐SN treatment, acquire enhanced ...
Yaosheng Li   +23 more
wiley   +1 more source

CD147/Basigin: From Integrative Molecular Hub to Translational Therapeutic Target

open access: yesAdvanced Science, EarlyView.
This review conceptualizes CD147 as a fundamental “Energy‐Structure Coupler,” physically bridging metabolic flux (via MCTs) with morphogenetic plasticity (via integrins/MMPs) to drive cancer, infection, and autoimmunity. Addressing the “specificity paradox” that limits current translation, the authors chart a strategic roadmap—spanning logic‐gated ...
Xiang‐Min Yang   +2 more
wiley   +1 more source

Role of GLUT1 in regulation of reactive oxygen species

open access: yesRedox Biology, 2014
In skeletal muscle cells, GLUT1 is responsible for a large portion of basal uptake of glucose and dehydroascorbic acid, both of which play roles in antioxidant defense.
Stanley Andrisse   +7 more
doaj   +1 more source

Myeloid Slc2a1-Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1

open access: yesJournal of Immunology, 2019
Macrophages (MΦs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism ...
A. Freemerman   +23 more
semanticscholar   +1 more source

Nanozymes Integrated Biochips Toward Smart Detection System

open access: yesAdvanced Science, EarlyView.
This review systematically outlines the integration of nanozymes, biochips, and artificial intelligence (AI) for intelligent biosensing. It details how their convergence enhances signal amplification, enables portable detection, and improves data interpretation.
Dongyu Chen   +10 more
wiley   +1 more source

Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Müller glial cells.

open access: yesAmerican Journal of Physiology - Cell Physiology, 2019
The retina is one of the most metabolically active tissues in the body and utilizes glucose to produce energy and intermediates required for daily renewal of photoreceptor cell outer segments.
Aditi Swarup   +11 more
semanticscholar   +1 more source

T Cell Exhaustion in Cancer Immunotherapy: Heterogeneity, Mechanisms, and Therapeutic Opportunities

open access: yesAdvanced Science, EarlyView.
T cell exhaustion limits immunotherapy efficacy. This article delineates its progression from stem‐like to terminally exhausted states, governed by persistent antigen, transcription factors, epigenetics, and metabolism. It maps the exhaustion landscape in the TME and proposes integrated reversal strategies, providing a translational roadmap to overcome
Yang Yu   +7 more
wiley   +1 more source

Decoding the Pathophysiology of Autoimmune Diseases—Mechanism, Triggers, and Nanotherapeutics: A Review

open access: yesAdvanced NanoBiomed Research, EarlyView.
This review highlights how autoimmune diseases arise from intertwined immunological, genetic, and environmental factors, emphasizing gut microbiota dysbiosis as a pivotal driver. It outlines emerging nanotechnology‐based strategies—such as liposomes, hydrogels, and polymeric nanoparticles—that enhance targeted drug delivery, minimize systemic toxicity,
Md. Meraj Ansari   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy