Results 221 to 230 of about 367,476 (333)

NLRP3 is crucial for macrophage metabolic reprogramming during <i>Vibrio vulnificus</i> infection. [PDF]

open access: yesMicrobiol Spectr
Jiang Y-L   +11 more
europepmc   +1 more source

Cinnamic‐Hydroxamic‐Acid Derivatives Exhibit Antibiotic, Anti‐Biofilm, and Supercoiling Relaxation Properties by Targeting Bacterial Nucleoid‐Associated Protein HU

open access: yesAdvanced Science, EarlyView.
Cinnamic‐hydroxamic‐acid derivatives (CHADs) are identified as novel inhibitors of the bacterial nucleoid‐associated protein HU, exhibiting potent antibacterial, anti‐biofilm (both inhibition and eradication), and DNA relaxation (anti‐supercoiling) activities. Moreover, CHADs demonstrate strong synergistic effects with multiple antibiotics.
Huan Chen   +22 more
wiley   +1 more source

Wearable and Implantable Devices for Continuous Monitoring of Muscle Physiological Activity: A Review

open access: yesAdvanced Science, EarlyView.
Recent advances in materials and device engineering enable continuous, real‐time monitoring of muscle activity via wearable and implantable systems. This review critically summarizes emerging technologies for tracking electrophysiological, biomechanical, and oxygenation signals, outlines fundamental principles, and highlights key challenges and ...
Zhengwei Liao   +4 more
wiley   +1 more source

NAD⁺ Reduction in Glutamatergic Neurons Induces Lipid Catabolism and Neuroinflammation in the Brain via SARM1

open access: yesAdvanced Science, EarlyView.
NAD⁺ homeostasis maintains neuronal integrity through opposing actions of NMNAT2 and SARM1. Loss of NMNAT2 in glutamatergic neurons reprograms cortical metabolism from glucose to lipid catabolism, depletes lipid stores, and triggers inflammation and neurodegeneration.
Zhen‐Xian Niou   +9 more
wiley   +1 more source

Intrinsic MicroRNA‐10a Restricts Regulatory T Cell Suppressive Function and Intestinal Repair by Coordinating Transcriptional, Metabolic, and Epithelial Repair Pathways

open access: yesAdvanced Science, EarlyView.
This study identifies microRNA‐10a (miR‐10a) as a key brake on regulatory T cell (Treg) suppressive function and intestinal repair. By targeting Blimp‐1, Uqcrq, and amphiregulin, miR‐10a restrains transcriptional, metabolic, and epithelial programs essential for Treg activity.
Wenjing Yang   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy