Results 321 to 330 of about 5,015,410 (358)

High‐Energy‐Density Aqueous Zinc‐Ion Batteries: Recent Progress, Design Strategies, Challenges, and Perspectives

open access: yesAdvanced Materials, EarlyView.
Strategies achieving high‐energy‐density aqueous zinc‐ion batteries are summarized and analyzed from both their separate advancements and the integrated effectiveness in this review. Then, perspectives are given for valuable guidance for further development of high‐energy‐density aqueous zinc‐ion batteries.
Mingcong Tang   +4 more
wiley   +1 more source

The Versatility of Layered Two‐Dimensional Heterostructures for Energy Storage: Bridging Scientific Insights and Practical Applications

open access: yesAdvanced Materials, EarlyView.
This review highlights the potential of 2D‐2D heterostructures (HRs) in advancing monovalent ion‐based energy storage. It examines their role in tailoring charge interactions mechanisms, optimizing interfacial properties, and overcoming the limitations of individual layered materials.
Neetu Bansal   +6 more
wiley   +1 more source

Designing the Next Generation of Biomaterials through Nanoengineering

open access: yesAdvanced Materials, EarlyView.
Nanoengineering enables precise control over biomaterial interactions with living systems by tuning surface energy, defects, porosity, and crystallinity. This review highlights how these nanoscale design parameters drive advances in regenerative medicine, drug delivery, bioprinting, biosensing, and bioimaging, while outlining key translational ...
Ryan Davis Jr.   +3 more
wiley   +1 more source

Toward Zero‐Excess Alkali Metal Batteries: Bridging Experimental and Computational Insights

open access: yesAdvanced Materials, EarlyView.
This review explores zero‐excess alkali metal batteries, highlighting anode–electrolyte interfaces, metal nucleation, dendrite growth, and SEI formation while comparing Li, Na, and K metals. It critically examines electrolyte and separator roles, emphasizing substrate design, electrolyte modifications, interfacial engineering, and solid‐state ...
Pan He   +6 more
wiley   +1 more source

Aramid Nanofiber Aerogels: Versatile High Complexity Components for Multifunctional Composites

open access: yesAdvanced Materials, EarlyView.
Different forms of aramid nanofibers (ANFs) and especially aerogels from them, offer a sustainable route to high‐performance biomimetic nanocomposites. Due to the cartilage‐like architecture, ANF‐based materials enable breakthroughs in energy, electromagnetic, biomedical, and water purification technologies.
Mingqiang Wang   +9 more
wiley   +1 more source

Unperceivable Designs of Wearable Electronics

open access: yesAdvanced Materials, EarlyView.
Unperceivable wearable technologies seamlessly integrate into everyone's daily life, for healthcare and Internet‐of‐Things applications. By remaining completely unnoticed both visually and tactilely, by the user and others, they ensure medical privacy and allow natural social interactions.
Yijun Liu   +2 more
wiley   +1 more source

Granular Hydrogels as Brittle Yield Stress Fluids

open access: yesAdvanced Materials, EarlyView.
This work reports the Kamani‐Donley‐Rogers yield stress fluid model can describe granular hydrogel deformation. The model robustly captures transient rheology and self‐healing behavior for granular gels of varying composition using only six parameters. This framework provides new insight regarding the effect of material parameters on granular yielding ...
Gunnar B. Thompson   +5 more
wiley   +1 more source

Intensive Widmannstätten Nanoprecipitates Catalyze SnTe With State‐of‐the‐Art Thermoelectric Performance

open access: yesAdvanced Materials, EarlyView.
The intensive lath‐shaped Ag2Te Widmannstätten nanoprecipitates are in situ generated in SnTe via AgPbSbTe3 alloying, and align with the formation of the parallel type and twin type interfaces. These Widmannstätten nanoprecipitates effectively scatter phonons to reduce the lattice thermal conductivity, resulting in a significantly enhanced average ZT ...
Tu Lyu   +10 more
wiley   +1 more source

Contributions of TaSUTs to grain weight in wheat under drought

Plant Molecular Biology, 2018
The homologous genes to OsSUT1-5 in wheat were identified and detailed analysed. TaSUT1 was the predominant sucrose transporter group and it illustrated the genotypic variations towards drought during grain filling. Sucrose transporters (SUT) play crucial roles in wheat stem water soluble carbohydrate (WSC) remobilization to grain.
Sarah Al-Sheikh Ahmed   +3 more
semanticscholar   +4 more sources

The weight of the mature wheat grain

Planta, 1970
Grains retained on the plants of some cultivars of common bread wheat lose dry matter after ripeness is attained, but later gain dry matter again. We conclude that the post-ripe plant may remain metabolically active.
Peter Meredith, Lynette D. Jenkins
openaire   +3 more sources

Home - About - Disclaimer - Privacy