Results 181 to 190 of about 1,196,134 (401)

Oxytocin alleviates liver fibrosis via hepatic macrophages

open access: yesJHEP Reports
Background & Aims: Previous studies demonstrated oxytocin treatment effectiveness in reducing mortality and reversing liver fibrosis in mice. However, the underlying mechanism remains obscure, given the absence of oxytocin receptor expression in ...
Xiangyu Zhai   +12 more
doaj   +1 more source

A Novel 10‐Protein Score for Liver Fat Content Predicts Cardiovascular‐Kidney‐Metabolic Disease Risk

open access: yesAdvanced Science, EarlyView.
A novel 10‐protein plasma score precisely quantifies liver fat, outperforming the fatty liver index. It robustly predicts the risk of numerous cardiovascular‐kidney‐metabolic diseases and integrates with genetic data for precision prevention, offering a practical alternative to magnetic resonance imaging (MRI). Abstract Liver fat content (LFC) is a key
Xiaoqin Gan   +12 more
wiley   +1 more source

CRISPLD2 Attenuates Intervertebral Disc Degeneration by Suppressing Oxidative Stress‐Induced Ferroptosis through the miR‐548I‐IL17A Axis

open access: yesAdvanced Science, EarlyView.
This study identifies CRISPLD2 as a key protector against IVDD. By regulating ferroptosis through the CRISPLD2–miR‐548I–IL17A axis, CRISPLD2 maintains NPCs homeostasis and reduces oxidative stress. Restoring CRISPLD2 expression effectively alleviates disc degeneration and highlights a promising therapeutic strategy for discogenic low back pain ...
Yangyang Shi   +11 more
wiley   +1 more source

Iron/Cobalt Dual‐Atom Catalyst Orchestrate Photothermal‐Chemodynamic Immunotherapy Against MRSA: Multi‐Omics Dissection in Murine and Porcine Models

open access: yesAdvanced Science, EarlyView.
FeCo dual‐atom catalyst (FeCo‐N‐DAC) with ultrahigh metal loading (Fe > 5.4%, Co > 4.8%) is developed for synergistic photothermal‐chemodynamic immunotherapy. FeCo‐N‐DAC penetrates deep‐seated tissues, eradicates MRSA biofilms, and reprograms immune‐inflammatory pathways via multi‐omics‐validated mechanisms.
Shihao Xu   +11 more
wiley   +1 more source

SETDB2 Mitigates Podocyte Dysfunction in Diabetic Kidney Disease Through Epigenetic Silencing of SMAD3

open access: yesAdvanced Science, EarlyView.
SETDB2 epigenetically represses Smad3 transcription by increasing H3K9me3 enrichment at its promoter, thereby mitigating podocyte dysfunction in DKD. The transcription factor TCF21 binds directly to the Setdb2 promoter and enhances its expression in podocytes. Abstract Podocyte dysfunction represents both an early pathological hallmark and a key driver
Lanfang Li   +14 more
wiley   +1 more source

Curcumin Attenuates Angiogenesis in Liver Fibrosis and Inhibits Angiogenic Properties of Hepatic Stellate Cells

open access: green, 2013
Feng Zhang   +6 more
openalex   +1 more source

Congenital Hepatic Fibrosis

open access: yesAnnals of Saudi Medicine, 1995
A M, Abdullah, H, Nazer
openaire   +2 more sources

OCTN2 Activates a Non‐Canonical Carnitine Metabolic Pathway to Promote MASH‐HCC Progression and Immunotherapy Resistance

open access: yesAdvanced Science, EarlyView.
In non‐MASH‐HCC, L‐carnitine promotes tumor progression primarily through its classical role in enhancing fatty acid oxidation (FAO). However, in MASH‐HCC, where FAO is markedly suppressed, L‐carnitine shifts from this canonical function to serve instead as an intracellular acetyl group buffer.
Chuqi Xia   +11 more
wiley   +1 more source

Conversion of Transplanted Mature Hepatocytes into Afp+ Reprogrammed Cells for Liver Regeneration After Injury

open access: yesAdvanced Science, EarlyView.
Donor‐derived tdTomato+ mature hepatocytes were FACS‐isolated and transplanted into Fah−/− host mice. During regeneration, these cells convert into proliferative, unipotent Afp+ rHeps. Their plasticity is governed by a PPARγ/AFP‐dependent metabolic switch, segregating into pro‐proliferative Afplow and pro‐survival Afphigh subpopulations.
Ting Fang   +12 more
wiley   +1 more source

Integrin β3 Orchestrates Hepatic Steatosis via a Novel CD36‐Dependent Lipid Uptake Complex

open access: yesAdvanced Science, EarlyView.
In MASH, ITGB3 recruits LYN and drives its ubiquitin‐proteasomal degradation via phosphorylation. This relieves DHHC5 inhibition, enabling ITGB3/DHHC5/CD36 complex assembly to enhance CD36 palmitoylation and fatty acid uptake, thereby exacerbating disease. Targeting ITGB3 blocks this pathogenic axis and ameliorates MASH.
Ying Zhang   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy